可兴奋细胞(如神经元和肌肉细胞)的膜电位经历了由一系列配体和电压门控离子通道介导的丰富动态变化。尤其是中枢神经元,它们是信息、感知和整合由突触输入介导的多个亚阈值电流并将其转化为动作电位模式的出色计算机。电生理学包括一组允许直接测量电信号的技术。有许多不同的电生理学方法,但由于果蝇神经元很小,全细胞膜片钳技术是记录来自单个中枢神经元的电信号的唯一适用方法。在这里,我们提供了果蝇膜片钳电生理学的背景知识,并介绍了解剖幼虫和成年大脑的方案,以及实现已识别神经元类型的全细胞膜片钳记录的方案。膜片钳是一种劳动密集型技术,需要大量练习才能成为专家;因此,应该预计学习曲线会很陡峭。然而,我们希望分享和传播神经元放电的即时满足感,因为需要更多的果蝇膜片钳来研究迄今为止未知的许多果蝇神经元类型的电特征。
频带级联激光器(ICL)由于低功耗和与硅光子整合的兼容性,尤其是对于痕量气体传感,因此在中红外应用中变得越来越有价值。ICL已在3 - 6 L m范围内证明了室温连续波动,其性能在3.3 L m左右。在更长波长下ICL性能的关键因素是光损失,即是由间隔带过渡引起的。这些损失随着活性区域的孔浓度而增加,从而导致ICL中光损耗的电流依赖性明显。传统方法从参数(例如斜率效率或阈值电流)中从长度依赖性变化中推断出光损失需要恒定光损耗。在这项研究中,我们提出了一种直接的光学传输测量技术,以确定波导损耗。我们的实验证实,随着电流密度,大大增加了波导损失,直接影响ICL的量子效率。与传统方法相比,这种方法提供了对光损失的精确评估,并具有功能替代性,可以解决假设恒定损失的局限性,并为各种波长提供了对ICL性能的洞察力。
摘要 功能性电刺激是脊髓损伤后重建后肢运动功能的有效方法,但目前尚无可作为植入刺激器电极的参考的部位图。本研究采用重物撞击法建立大鼠胸椎脊神经9挫伤模型,采用横断法建立大鼠T6/8/9脊髓损伤模型,进行脊髓内微刺激,记录运动类型、部位坐标及刺激诱发的阈值电流。横断(完全损伤)后,髋屈曲核心区由T13节段移位至T12节段,髋伸展核心区由L1节段移位至T13节段。移位受横断后时间影响,不受横断节段影响,且横断后时间越长,移位距离越长。本研究为脊髓损伤后脊髓电极植入提供参考。本研究已于2019年2月26日获得南通大学实验动物管理与使用委员会批准(批准号:20190225-008)。关键词:模型;运动;神经功能;大鼠;恢复;修复;脊髓损伤
关键词:工程变更单 (ECO)、状态相关泄漏功率、总负松弛 (TNS)、亚阈值泄漏功率。1. 引言无线通信设备、网络模块设计模块的主要性能参数是最小化功率。另一方面,更高的性能、良好的集成度、动态功耗是推动 CMOS 器件缩小尺寸的一些参数。随着技术的缩小,与动态功耗相比,漏电流或漏功率急剧增加。静态功耗增加的主要原因是漏功率,它涉及许多因素,如栅极氧化物隧穿泄漏效应、带间隧穿 (BTBT) 泄漏效应和亚阈值泄漏效应 [1]。器件在电气和几何参数方面的差异,例如栅极宽度和长度的变化,会显著影响亚阈值漏电流 [2]。某些泄漏元素包括漏极诱导势垒降低 (DIBL) 和栅极诱导漏极泄漏 (GIDL) 等,[3]。 65 nm 及以下 CMOS 器件最重要的漏电来源是:栅极位置漏电、亚阈值漏电和反向偏置结处 BTBT 引起的漏电。电压阈值的降低会导致亚阈值电流的增加,这允许在电压下降的帮助下保持晶体管处于导通状态。由于缩放
摘要SI是最重要的半导体材料之一,因为它一直是现代电子产品的支柱。但是,由于Si是间接带隙的结果,因此它不广泛用于发光源,因为Si是效率低下的发射极。硅底物上III-V纳米结构的直接外延生长是在硅平台上实现光子设备的最有前途的候选者之一。III-V在Si上的整体整合的主要问题是高密度螺纹位错的形成。TDS的传播将导致IIII-V外部活性区域中非辐射重组中心的高比例。为了停止TD传播,已经应用并在本演示文稿中使用了不同的外延策略,例如INGA(AL)作为应变层,GE缓冲层和图案化的底物。作为零维的材料,量子点(QD)具有三维量子约束,它会产生三角函数,例如状态的密度。因此,III-V QD激光器具有较低的阈值电流,温度不敏感的操作以及对螺纹位错的敏感性较小,这是在III-V型激光器中形成活性区域的理想候选者。自2011年以来,在UCL的寿命和高功率上,已提出并开发了在SI和GE底物上生长的1300-nm INM/GAAS QD激光器。在本演讲中,将汇总在SI平台上单体生长的INAS/GAAS QD激光的开发里程碑,并且还将预测未来几年的潜在趋势。
被广泛认为是节气瓣癫痫发作的模型。尽管对啮齿动物进行了深入的研究,但没有研究暗示这种模型正在发展中。我们专注于七个男性和雌性大鼠的年龄组。持续时间为0.3 ms的双相脉冲,并将20至80 mA的电流强度跨胶施用3 s,以计算单个年龄组的阈值强度。阈值刺激强度对于诱发锁骨癫痫发作所需的阈值刺激强度是高年龄和性别依赖性的。在最年轻的(15天大)的组中观察到最高的阈值,然后降低到25天的年龄,并再次增加到成年。在所有年龄段的女性中,阈值电流趋于较低。抽搐性癫痫发作的发生率随着产后25年的刺激强度而增加。在31天大的大鼠中,无论刺激电流和性别如何,都会发生不规则。进行随后的分析,将这些动物分为两组:15至25天的少年和青少年/成年人,年龄31天及以上。我们的统计分析表明,在刺激刺激后,大量强度较高,但不是青春期/成年大鼠的刺激风险增加。女性倾向于对低水流的刺激比男性更敏感。与同龄男性相比,18至25天老年的女性癫痫发作严重程度更高,并且癫痫发作持续时间随少年而不是青春期/成年动物的刺激强度而增加。数据将大鼠6 Hz模型的使用扩展到未成熟的动物,并且可能是小儿颞叶癫痫发作的模型。
Si 基光子集成电路 (PIC) 将光学活性元件单片集成在芯片上,正在改变下一代信息和通信技术基础设施 1。在寻找基本的直接带隙的过程中,人们对 IV 族半导体合金进行了深入研究,以获得电泵浦连续波 Si 基激光器。沿着这条路径,已经证明可以通过化学计量和应变工程将新开发的 GeSn/SiGeSn 异质结构的电子带结构调整为直接带隙量子结构,从而为激光提供光增益 2。在本文中,我们介绍了一种多功能电泵浦激光器,它在低温下发射近红外波长为 2.35 µm 的低阈值电流为 4 mA(5 kA/cm 2)。它基于 6 周期 SiGeSn/GeSn 多量子阱结构,沉积在具有弛豫 Ge 缓冲层的 Si 衬底上。通过定义一个圆形台面结构来制作小尺寸微盘腔激光器,该结构蚀刻穿过层堆栈直至 Si 衬底。随后,通过去除此区域的 Ge 缓冲层,将盘的边缘蚀刻 900 nm。剩余的 Ge 基座用作 p 接触区以及激光器的散热器(图 1 a、b)。在这个简单的结构中,由于 SiGeSn 的导热性较差,有源区的实际晶格温度比热浴 T b 高约 60K。但是,激光器在 T b =40K 以下以连续波 (CW) 模式工作,但也可以在 T b =77K 时以直接调制模式高效工作至 ns 脉冲。
第一学期 论文 IV – 电子设备 第一单元 晶体管:JFET、BJT、MOSFET 和 MESFET、不同条件下 IV 特性方程的结构推导、微波器件、隧道二极管、传输电子器件(Gunn 二极管)、雪崩渡越时间器件、Impatt 二极管和参数器件。 第二单元 光子器件:辐射和非辐射跃迁、光吸收、体和。 薄膜光电导器件 (LDR)、二极管光电探测器、太阳能电池(开路电压和短路电流、填充因子)、LED(高频极限、表面和间接复合电流的影响、LED 的运行)、半导体;二极管激光器(激活区域中粒子数反转的条件、光限制因数、光增益和激光的阈值电流。单元 - III 存储设备:只读存储器 (ROM) 和随机存取存储器 (RAM)。ROM 的类型:PROM、EPROM、EEPROM 和 EAPROM、静态和动态 RAM (SRAM 和 DRAM)、SRAM 和 DRAM 的特性。混合存储器:CMOS 和 NMOS 存储器、非易失性 RAM、铁电存储器、电荷耦合器件 (CCD)、存储设备:磁性(FDD 和 HDD)和光学(CD-ROM、CD-R、CD-R/W、DVD)存储设备的几何形状和组织。单元 - IV 电光、磁光和声光效应,与获得这些效应相关的材料特性,这些设备的重要铁电、液晶和聚合物材料,压电、电致伸缩和磁致伸缩效应。这些特性的重要材料及其在传感器和执行器设备、声学延迟线中的应用,压电谐振器和滤波器、高频压电器件-表面、声波器件、单元 - V 太阳能光伏能量转换物理和材料特性基础、光伏能量转换基础:固体的光学特性。直接和间接过渡半导体,吸收系数和载流子带隙复合之间的相互关系。太阳能电池的类型、pn 结太阳能电池、传输方程、电流密度、开路电压和短路电流、单晶硅和非晶硅太阳能电池的简要说明、先进太阳能电池的基本概念,例如串联太阳能电池。固体液体结太阳能电池、半导体的性质、电解质结、光电化学太阳能电池的原理。教科书和参考书:1. SM Sze Willey (1985) 半导体器件 - 物理技术 2. MS tyagi 半导体器件简介 3. M Sayer 和 A Manisingh 物理学和工程学中的测量仪器和实验设计 4. Ajoy Ghatak 和 Thyagrajam 光电子学 5. Millman Halkias:电子设备
半导体设备在电子行业中起着至关重要的作用。这些设备包括从领先的硅技术到复合半导体方法的各种类型。尤其是IIII-V复合半导体激光器在几十年中变得越来越重要,在各种领域(例如微电子,光电子学和光学电信)中找到了应用。半导体的多功能性允许对其属性进行自定义修改,以满足特定应用程序的需求。在设计光学元件时,半导体激光器的远场是至关重要的参数,因为许多半导体激光应用需要与单模光纤建立足够的连接。使用单模激光器设备,可以将更多功率传递到光纤。此外,从光学的角度来看,单模式激光器更好,因为光线更容易对齐。因此,使用单模半导体激光比构建复杂的光学系统要容易得多。在本文中,基于GAAS的630 nm区域半导体激光器的远场是与Modulight Corporation合作的优化。目标是了解制造步骤和选定的设备几何形状如何影响这些激光器的远场模式,从而改善对设备过程和过程产量的控制。远场高度依赖于激光设备的尺寸,因此,将两种不同的底物(638 nm和633 nm)与不同的尺寸一起使用以进行比较。除了远场外,还分析了光电压和光谱测量值。此外,为了更好地了解脊指导的光学特性和几何形状之间的依赖性,使用扫描电子显微镜测量了脊的尺寸。本论文中使用的激光条是通过光刻的步骤和等离子体蚀刻来捏造的。否则两个底物的处理都是相同的,但是633 nm底物的蚀刻时间更长,从而产生了更深的蚀刻深度。两个设备都使用了五个不同的脊宽度和三个不同的空腔长度。将实现的脊尺寸和调间模式行为与630 nm区域半导体激光结构的这些参数的建模结果进行了比较。脊的尺寸的表征结果显示了两个过程的各向异性和平滑档案。633 nm设备的蚀刻时间较长,导致脊比638 nm设备深507 nm,这是预期的。与638 nm设备相比,具有更深山脊的633 nm设备具有更深的山脊的阈值电流和输出功率变化较小。这项工作的目的是实现具有单模空间操作的激光器,该激光器是用633 nm激光器获得的。最佳尺寸为1000 µm的腔长为1.8 µm和3.4 µm的脊宽度,腔长为1500 µm,脊宽为2.2 µm。对于较浅的山脊深度,即638 nm激光器,所有选定的脊宽度和长度均显示多模具操作。此外,模拟结果很好地支持了实验结果。