如果没有各种薄膜涂层应用方法,现代技术将难以想象。在各种切削工具(钻头、刀具、铣床等)上沉积硬化涂层可以减少磨损并延长其使用寿命。在不同光学部件表面沉积薄膜,可以获得具有所需参数的产品。对于微电子技术来说,涂层厚度从几纳米到几十微米不等。磁控溅射目前被广泛用于涂覆各种材料的薄膜。在此过程中,靶材阴极在真空室中被工作气体的离子溅射,从而在零件上沉积薄膜涂层 [1 – 5] 。磁控溅射系统 (MSS) 的主要缺点是所生产涂层中原子的能量成本很高 [6,7]。但是,如果阴极处于液相,则可以将涂层涂覆率提高 10 倍,并将能源成本降低 1/4,同时保持涂层质量。涂层形成率与典型的真空电弧蒸发 [ 1 ] 相当。阴极材料利用率低(不高于 40%)是采用固相阴极的 MSS 的另一个缺点。采用液体阴极的 MSS 可以将材料利用率提高到几乎 100%,从而大大降低经济成本并实现无浪费生产。本研究的目的是根据从液相溅射的锡阴极的实验数据来选择加工模式并评估阴极溅射系数和放电参数。阴极溅射是使用经过改装的永磁磁控溅射系统进行的,以便
电池的价格在不同地区的价格也有所不同,中国的价格平均最低,亚太地区的其余地区的价格最高。这种价格差异受到大约65%的电池电池和几乎80%的阴极的影响,在中国制造。
晚期分子图像技术(AMIT)超导回旋子的内部离子源使用纯tantalum制成的阴极生成高能H-离子束,以生产正电子发射断层扫描的同位素。在服务期间,阴极受到血浆中高能离子的影响。所产生的侵蚀会产生陨石坑,从而降低提取光束的电流密度。当离子源无法再激活时,最终需要更换阴极。这项研究探讨了通过激光金属沉积添加剂制造来修复Amit回旋子中使用的触觉阴极的可能性。首先将受损的部分以3D成像,扫描电子显微镜和Vickers显微硬度为特征,以了解服务过程中发生的损伤机制并量化损害的程度。使用高纯度触觉线和粉末原料进行了测试,并确定了使用高纯度触觉的电线和粉末原料。已经证明了激光金属沉积恢复用于Amit Cyclotron的受损阴极的能力。
摘要:可充电锌空气电池 (ZAB) 具有高理论能量密度、高电池电压和环境友好性,可在向更清洁、更可持续的能源系统过渡中发挥重要作用。ZAB 的空气阴极是预测电池整体性能的主要决定因素,因为它分别负责在放电和充电过程中催化氧还原反应 (ORR) 和氧释放反应 (OER)。在本研究中,使用基准双功能氧电催化剂 (Pt/C-RuO 2 ) 对空气阴极的结构进行了详细的优化研究。根据商用气体扩散层 (GDL) 的选择、热压催化剂层 (CL) 的影响以及集电器的最佳孔径优化了空气阴极的组成和结构。本研究中的最佳阴极显示最大功率密度(PD max)为167 mW/cm 2 ,往返效率和电压间隙(E gap )分别为59.8%和0.78 V,表明本研究中提出的空气阴极制备方法是提高ZAB整体性能的一种有前途的策略。
其中 q =1.605x10 -19 是电子的单位电荷。我们可以看到,这个电位是光频率的线性函数。获取不同光频率下的值使得确定功函数成为可能。为了演示光电效应,应用了真空光电二极管。真空光电二极管(或真空光电管)是带有光敏阴极的真空二极管。图 1 显示了真空光电二极管的结构和基本测量装置。
在电池单元生产开始时,为了生产阳极和阴极的电极糊,必须首先明确识别原材料。所需的活性材料、导电炭黑、溶剂或粘合剂以及添加剂通常都标有条形码。在 Balluff,您可以找到用于读取这些代码的各种产品,以及其他识别解决方案。其中包括手持式阅读器和 RFID 系统,它们无需接触即可识别相关原材料。这让您可以确保糊剂(浆料)按照配方生产,并且不会出现任何质量缺陷。
然而,V x o y阴极的商业应用仍然受到限制,主要是因为该材料是在其充电状态下合成的(即没有互插离子的来源:LI,Na,Zn和Mg)和毒性。为了解决以前的化学插入,已经研究了将离子源插入V x o宿主材料中,包括Li X-,Na X-,Zn X - 和Mg X -V Y O Z。[24–30]插量离子不仅充当层中的支柱,以防止结构变形,而且还增加了层中离子源的量。先前的评论论文全面报道了基于V X O Y的材料的特征,并总结了其作为在LIBS,NIBS,ZIB和MIBS中用作阴极的电化学性能。[12,13,25,26]然而,要详细了解储能机制是很有吸引力的,因为它们在充电和电荷过程中监测实时反应,因此详细了解储能机制是有吸引力的。在这里,“原位”是指“在现场或反应物内部”,而“ Operando”是指“在工作或操作条件下”,但是这些术语通常在文献中互换。更普遍地说,“原位/操作分析”用于描述实时电化学操作下的电化学分析。[31–34]
摘要鉴于对锂离子电池(LIBS)的快速增长需求以及即将到来的自由lib退休的高潮,对用过的LIB的有效回收表明,对经济利益和环境保护的重要性越来越大。使用Lifepo 4(LFP)阴极的LIB占LIB市场的一半,因此必须为用过的LFP(SLFP)电池开发适当的回收方式。在这项工作中,提出了SLFP阴极的闭环再生,其中发明了一种易于的冷刺激途径,以使SLFP层从Al Foil中剥离,然后在基于NACLO的氧化剂的情况下,在果皮SLFP层中选择性地有效地从果皮SLFP层中选择性地提取了Li和Fe元素。元素Li的浸出率可以达到98.3%,并且通过恢复的Li 2 Co 3和FEPO 4合成的重生LFP显示出卓越的性能,排放能力为162.6 mAh g -1,在0.5 C下为162.6 mAh g -1。这种再生路线大大降低了化学型的使用,从而缩短了Inpurity Remaver the Impurity Remaver the Impurity powner,因此,将Slfrity Remerties和Charefore conlef inflip crolection降低了,并将其重新降低。
和循环寿命。但是,LIB遭受了李金属的易燃性,毒性,成本和稀缺性的问题。[4,5]基于水溶液和地球丰富元素的充电电池被认为是当前LIB的更可持续的替代品。水性金属离子电池本质上是安全的,环保的,便宜的,并且能够在大型电流下运行。[6–8]水锌离子电池(ZIB)是一种类型,具有高理论能力(820 mAh g-1)和金属锌的低电化学潜力(-0.76 v Vs标准氢气触发),[9-13],但[9-13],但对于ZIB的高度稳定的摩托模具仍是ZIB的高度稳定性。普鲁士蓝色类似物(PBA)具有X M [Fe(Cn)6] Y·N H 2 O(0 PBA的容量可以达到120 mAh g-1 [14-17],并且由于存在两对氧化还原夫妻,并且稳定性非常出色,并且稳健的3D开放式框架结构允许插入各种碱离子离子而无需分解。 [18–20]但是,PBA仅为Zn 2 +阳离子(通常小于80 mAh g-1)提供相对较低的特性容量,而Zn 2 +的插入可以导致不受控制的相变和导致性能降级。 [9,21,22] Liu等。 首先提出了使用菱形Zn 3 [Fe(CN)6] 2(ZnHCF)阴极的ZiB,该阴极的容量低于65.4 mAh g -1,在100个周期后的能力保留76%。 [24] Mantia等。 [30]PBA的容量可以达到120 mAh g-1 [14-17],并且由于存在两对氧化还原夫妻,并且稳定性非常出色,并且稳健的3D开放式框架结构允许插入各种碱离子离子而无需分解。[18–20]但是,PBA仅为Zn 2 +阳离子(通常小于80 mAh g-1)提供相对较低的特性容量,而Zn 2 +的插入可以导致不受控制的相变和导致性能降级。[9,21,22] Liu等。首先提出了使用菱形Zn 3 [Fe(CN)6] 2(ZnHCF)阴极的ZiB,该阴极的容量低于65.4 mAh g -1,在100个周期后的能力保留76%。[24] Mantia等。[30][23]合成了一个立方结构PBA(CUHCF)用于Zn 2 +存储,该阴极完成了100个循环,其容量为56 mAh g-1。表明,CuHCF中的容量衰减可以归因于相位转变为第二相,而该相位在电脑上的活性较小。[25,26]为了减少Zn 2 +插入产生的相变影响,研究人员采用了低甚至零Zn 2 +浓度的电解质,以使NIHCF // Zn,[27] Cuhcf // Zn,[28],[28],[28]和NAFE-PB // Zn [29] [29] [29] hybrid-ion-ion-ion-ion-ion-ion-ion-ion-ion。尽管如此,尽管这些阴极中的Zn 2 +的存储能力仍然很低,尽管通过增加扫描电压来改善周期寿命。