印度电动汽车革命的未来不仅仅取决于加速普及——它还需要采取大胆行动,实现驱动这些汽车的关键部件的本地化。在日益动荡的地缘政治环境中,能源安全受到威胁,印度迫切需要采取果断措施。虽然人们一直关注通过生产挂钩激励 (PLI) 等计划实现先进化学电池 (ACC) 的本地化,但对电池部件本地化的重视程度较低。阳极是电池中仅次于阴极的第二大最有价值部件,尽管印度可以获得原材料和支持行业,但阳极仍然是一个尚未开发的机会。本期简报深入探讨了阳极本地化的潜力,并概述了将印度定位为电动汽车供应链领导者的战略举措。
在一个比以往任何时候都更快的世界中,至关重要的是,锂离子电池(LIBS)不会落后。电池性能取决于三个关键因素:能量密度,充电速度和耐用性。流行的阴极化学包括富含Ni的材料和混合磷酸盐,每种都提供独特的优势。该项目旨在融合和优化两种阴极材料的组合,合并其优势以创建较高质量的Lib阴极,不仅可以增强性能,还可以减轻每种材料的弱点。在该项目中,富含Ni的材料(NMC811-高能量密度)与磷酸盐材料(LMFP64 - 在快速充电速率下更好的性能)混合。我们将展示使用混合阴极的优势,并在两种活性阴极材料之间找到优化的比率。
•电池价值链中的大多数中游活动都与中国,日本和韩国等主要细胞生产国息息相关。•许多植物(例如阴极的活性材料,Li盐,铜箔等)对于相当于细胞生产的15-20 gwh的尺寸可行。在较低的规模上,它们可能是不可行的。•当前欧洲的大多数GIGA Factories仍依靠东亚地理位置来供应,但慢慢计划将诸如电解质,阴极活动材料和阳极活动材料等材料的供应内化。•对于南非,钒电解质(带有下游VRB制造)和铝箔是两个简单的选择。•合成石墨也是一种可能的选择,可以由煤焦油产生,但由于需要在热烤箱中加热焦炭/煤焦油,因此需要大量的电力。
GFCL EV的当前产品组合包括电解质盐LIPF6,添加剂,电解质配方,阴极的活性材料,例如LFP和PARTODE粘合剂,例如PVDF和PTFE,以及用于钠离子电池的NAPF6的专业产品,以及用于快速充电的钠含量。在项目方面,GFCL EV的LIPF6项目已经在销售之前就已经实现了商业生产和验证过程。另外,LFP项目预计将以CY 24的第三季度运行,从而迎合锂离子电池(LIB)价值的30%,这使其成为全球为少数几家公司之一,以在一个屋顶下为EV电池提供如此全面的产品范围,并巩固其作为行业Frontrunner的地位。也可能注意到,2024年3月31日之前的调试和商业生产也使GFCLEV有权获得优惠15%的所得税平板。
COFE/FE3C合金/碳化物杂交结构增强了耐用性,并显示出作为阴极的催化性能。该材料在液体和固态锌空气电池中都表现出显着的功效,即使在零下的温度下,也显示出其实用的电化学应用的潜力。使用AS-设计的CO0.7FE0.3/FE3C作为空气电极制造液态ZAB,该液态可以同时催化ORR和OER;锌箔作为阳极,6 M KOH作为电解质。设计了一种透明,柔性和稳定的基于PVA-CMC的凝胶电解质。将凝胶膜浸入浓缩的10 m kOH+0.2 m Zn(OAC)2溶液中,在室温下24小时,然后在固态Zn-Air电池(ZAB)中组装之前。除PVA-CMC凝胶电解质除外,所有条件都像液体ZAB。
全稳态锂离子电池(LIB)吸引了潜在安全的存储系统。1-7此外,近年来,已经对3D打印技术进行了调整以使Libs的制造,从而允许方便地生产柔性设计,例如微型3D形状。原则上,使用简单的打印系统可以将这种微电池直接集成到包含各种电子设备的基板上。最近,已经提供了用于Lib的阴极和阳极的3D可打印墨水。8-13在此工作,Lewis等。 意识到,使用3D可打印电极制造的锂离子微生物具有正确调整的流变学和电化学特性。 8 Kohlmeyer等。 开发了阴极的Lifepo 4和LiCoo 2(LCO)墨水,阳极的Li 4 Ti 5 O 12(LTO)油墨。 11这些墨水由通常用于电极制备的材料组成:活性材料,碳纳米纤维,聚(乙烯基氟化物)(PVDF)(PVDF)和N-甲基-2-吡咯烷酮(NMP)。 可打印的电解质墨水对于打印完整的电池也很重要,并且一些研究小组报告了可打印电解质,如表S1所述。 14-18 Cheng等。 使用高温直接ink写作技术开发了3D打印的混合固态电解质。 15电解质墨水由溶解在n-丙基-N-甲基吡咯烷的N-丙基N-甲基 - n-甲基 - 甲基二硫酸锂(li -tfsi)组成8-13在此工作,Lewis等。意识到,使用3D可打印电极制造的锂离子微生物具有正确调整的流变学和电化学特性。8 Kohlmeyer等。 开发了阴极的Lifepo 4和LiCoo 2(LCO)墨水,阳极的Li 4 Ti 5 O 12(LTO)油墨。 11这些墨水由通常用于电极制备的材料组成:活性材料,碳纳米纤维,聚(乙烯基氟化物)(PVDF)(PVDF)和N-甲基-2-吡咯烷酮(NMP)。 可打印的电解质墨水对于打印完整的电池也很重要,并且一些研究小组报告了可打印电解质,如表S1所述。 14-18 Cheng等。 使用高温直接ink写作技术开发了3D打印的混合固态电解质。 15电解质墨水由溶解在n-丙基-N-甲基吡咯烷的N-丙基N-甲基 - n-甲基 - 甲基二硫酸锂(li -tfsi)组成8 Kohlmeyer等。开发了阴极的Lifepo 4和LiCoo 2(LCO)墨水,阳极的Li 4 Ti 5 O 12(LTO)油墨。11这些墨水由通常用于电极制备的材料组成:活性材料,碳纳米纤维,聚(乙烯基氟化物)(PVDF)(PVDF)和N-甲基-2-吡咯烷酮(NMP)。可打印的电解质墨水对于打印完整的电池也很重要,并且一些研究小组报告了可打印电解质,如表S1所述。14-18 Cheng等。 使用高温直接ink写作技术开发了3D打印的混合固态电解质。 15电解质墨水由溶解在n-丙基-N-甲基吡咯烷的N-丙基N-甲基 - n-甲基 - 甲基二硫酸锂(li -tfsi)组成14-18 Cheng等。使用高温直接ink写作技术开发了3D打印的混合固态电解质。15电解质墨水由溶解在n-丙基-N-甲基吡咯烷
摘要 - 我们报告了一种可生物降解的自动传感器,用于测量体内溶解的氧气。操作原理是氧还原反应与腐蚀电化学夫妇阴极的通常显性氢还原反应的竞争。由于氧还原反应对总体电化学反应的相对贡献取决于局部氧气的集中,因此这对夫妇的输出电压也取决于局部氧气浓度。通过使用层压层嵌入可生物降解的聚(乳酸)底物中,将传感器嵌入可生物降解的金属镁和钼。外部生理溶液被用作电解质。在典型的生理氧浓度范围内测量了传感器的输出电压(即,在整个腐蚀夫妇中产生的电压)是氧浓度的函数。观察到每百分比氧浓度约为6 mV的线性输出电压响应;高于此范围的氧气浓度导致传感器饱和。[2020-0192]
简介/目的:技术进步导致了高能微波武器(尤其是电磁炸弹)的建造和使用问题的现实化。然而,在最近的军事专业文献中,这个问题很少被提及。方法:分析了有关该主题的现有文献。结果:已经确定,一般的功能原理和理论基础已经广泛应用并且为人所知多年。专业机构的大量实验证实了电磁脉冲的有效性。这对于基于半导体技术的设备的灵敏度尤其如此。此外,假设在当前的技术水平下,技术解决方案已广泛用于大量实体。文献中处理的最常见的电磁炸弹模型是使用压缩通量发生器和带有虚拟阴极的振荡器。根据作者的说法,这种变体将确保最终产品具有真实的物理尺寸和足够的强度以供使用。文献中发现的另一个问题是缺乏足够的保护措施
用于生产电池阴极的电解质由特殊混合物组成,包括氯化钠和镍粉颗粒。这是弗劳恩霍夫研究所IKTS历时8年的研究成果。目前电池组装过程正在如火如荼地进行中。大约一半的电池已经完工并成功投入运行。测试正在持续进行中。单个细胞的各个细胞成分之间的连接对于细胞的质量和寿命至关重要。其中,专门开发的激光焊接工艺尤其值得关注。使用工业微型计算机断层扫描 μCT 扫描仪通过复杂的测试程序优化和验证了每个原型电池焊接封闭后所有组件的精确对准、正确的填充水平和成分以及电池初始化后阴极材料的行为。随后对各个电池进行的充放电性能测试到目前为止都是令人满意的,显示出了预期的结果。到目前为止的拒绝率也很低,符合预期。