基于超导电路的超导量子比特由超导电容器和具有 transmon 几何的约瑟夫森结组成,广泛应用于高级量子处理器,追求可扩展的量子计算。transmon 的量子比特频率的调整依赖于超导环路中两个超导体-绝缘体-超导体 (S-I-S) 约瑟夫森结的超电流之间的磁通量相关干扰。基于超导体-半导体-超导体 (S-Sm-S) 材料的约瑟夫森结为门可调 transmon 提供了一种可能性,称为“gate-mon”,其中量子比特频率可以通过静电平均值进行调整。在 III-V 材料平台上实现的 gatemon 显示出 transmon 替代品的令人瞩目的发展,但在可扩展性方面仍然存在一个大问题。硅锗 (SiGe) 异质结构由于其高空穴迁移率和 Ge-金属界面的低肖特基势垒而成为承载混合器件的潜在平台之一。此外,与硅基半导体行业的兼容性是扩大量子比特平台的一个有力优势。在本论文中,我们基于 SiGe 异质结构中的 Al-Ge-Al 约瑟夫森结开发了门控。首先,建立了自上而下方法中约瑟夫森场效应晶体管 (JoFET) 的稳健制造配方。我们对 JoFET 进行了详尽的测量,以研究它们随栅极电压、温度和磁场变化的特性。这些器件显示了临界电流 (I C ) 和正常态电阻 (R N ) 的栅极可调性。估计这些器件具有高透明度的超导体-半导体界面,SiGe异质结构上的高 I C R N 乘积证明了这一点。在有限电压范围内,观察到对应于多个安德烈夫反射 (MAR) 的特征。然后,我们在 SiGe 异质结构上制造和表征氮化铌 (NbN) 超导谐振器。我们在传输模式下测量谐振器,并从传输系数 (S 21) 中提取谐振频率 (f r)、内部品质因数 (Q i) 和耦合品质因数 (Q c)。随后,我们开发了制造工艺,将与电容器分流的 Al-Ge-Al 结(换句话说,gatemon)集成到谐振器方案中,并根据设计进行制造。我们在其中一个制造的 gatemon 中演示了反交叉特性。使用双音光谱技术映射门控器的谐振频率,发现它是门可调的。量子位具有较大的光谱线宽,这意味着相干时间较低。此外,我们对超导量子干涉装置 (SQUID) 几何中的结进行了电流相位关系 (CPR) 测量。我们可以证明结构成非正弦 CPR。此外,在辐照结的电流-电压特性曲线中观察到整数和半整数 Shapiro 阶跃。这表明我们的结具有 cos 2 φ 元素,这可以为受保护的量子位开辟另一种可能性。
在弯曲的时空中,量子闪光导致颗粒的自发发射。著名的是,如果弯曲的时空包含事件范围,则可以通过鹰效应[1,2]来散发成对的颗粒。但是,(静态)黑洞事件范围并不是导致粒子发射的唯一“时空曲率状态”。模拟空间是有效的波介质,可以在可配置的弯曲空间上进行桌面实验[3]。除了静态黑洞[4-10]外,还可以创建例如(静态)白洞事件范围[4,6,8,11 - 15],旋转几何形状类似于Kerr黑洞[16,17],扩展了宇宙[18-20]或什至(静态)两个马相互作用[21,22]。对于具有静态视野的这些系统,地平线上的波浪的经典频率转移一直是传统的基准来证明模拟重力物理学,尽管也观察到了无法与地平线相关的波浪的散射[6,11,11,13,23,24]。相关的颗粒对粒子的相关对被认为是量子鹰效应的明确标志[26,27],因此已经对流体系统进行了广泛的研究,其中已经研究了它们在各种色散方面的纠缠[28-37]。然而,这些研究并未对比地平线和无水平的自发发射,并且在其他模拟系统和许多模式中都没有做到这一点。ergo,时空曲率对重力类似物中量子发射的影响的问题出现了:是什么区别于地平线的发射(鹰效应)与地平线发射?在这封信中,我们使用分散模拟光学系统[4,6,8,12,38 - 40]证明了不同“时空曲率状态”之间的过渡。由于分散,每种频率模式在带有或不带有ho子的时空时都会经历不同的运动学。为了进一步查明物质,我们使用了一个系统,其中粒子是从一个点发出的:大约阶梯形的光学脉冲通过分散介质移动,我们在1D中考虑。脉冲强度通过光学KERR效应增加了介质的折射率N,从而产生了移动的折射率前部(RIF)。台阶下的光被增加的索引减慢,即,某些频率的光将在脉搏速度以下放慢速度并捕获到RIF中。这类似于黑洞事件范围内波的运动学[3,41,42]。在其他频率下,光线遵循不同的运动学场景(即,波浪的轨迹)。因此,这种简单的光学系统使我们能够在这些不同情况下对比量子发射。此外,存在散射的分析解决方案。我们介绍了RIF模式的所有可能的运动场景,从而解释了阶跃高度(索引变化中的幅度)和系统分布之间的相互作用如何产生时空曲率的不同状态。此外,我们使用对数负性量化了模式的两部分纠缠,这是单调的纠缠。然后,我们使用[43,44]中开发的一种分析方法来描述模式在RIF处的散射,并计算到时空曲率的每个策略中的自发发射。关键模式的纠缠光谱表示多模纠缠,这高度依赖于运动学方案。因此,我们完成了所有模式对之间在时空曲率的所有模式对之间计算的纠缠程度。
gan lna B. Pinault A,B,J.G。Tartarin a,b , D. Saugnon a , , R. Leblanc c a Laboratoire d'analyse et d'architecture des systèmes (LAAS-CNRS), Toulouse, France b Paul Sabatier University, University of Toulouse, Toulouse, France c OMMIC, Limeil-Brévannes, France Abstract In this article, we study the robustness of 3 versions of a single stage LNA configured根据对电磁干扰信号的探测率或鲁棒性的不同模式。将10 GHz处的RF步长的连续序列应用于研究的3个LNA中的每个序列。这些强大的MMIC LNA是使用OMMIC技术的D01GH GAN工艺设计的,从名义低噪声模式转换为高线性模式。此DC偏置开关允许将功率输入1DB压缩点增加8 dB。本研究的重点是这些LNA(敏捷的LNA #A)在标称低噪声模式(具有较低IP 1DB)或标称高性线模式(以退化的噪声图NF 50的价格)下进行操作时的鲁棒性。使用较大尺寸的设备(可鲁棒的LNA #R)将此原始的LNA #A与强大的常规设计进行了比较。踩压在10 GHz的过程中,这是这些LNA的中心频带。所有操作模式均显示出表现出相当可重现的阶跃应力图,尽管可以在低噪声和高线性操作条件之间区分热或非线性效应,并且与强大的设计LNA #R相比。引言由于其内在特性,GAN LNA提供了有趣的解决方案,用于需要高探测性和鲁棒性来攻击的应用。我们证明了用于实现自然电子保护的常规LNA电路设计策略的替代方法的相关性,而没有放置LNA #A或LNA #R之前放置的限制器,或者无需关闭DC偏见:此保护选项受益于将LNA保持在操作中的lna,即在事件输入信号增加的情况下,即使在Electial defraded Inflad decrademention中,在运行率发现的情况下,n. RF步长应力。它允许对接收器进行新的定义,因为它们还可以集成RF滤波器,并且可以承受比GAAS对应物更高的温度。因此,它们是雷达和电信应用的出色候选人。系统能够承受高水平RF功率的能力通过其在最终攻击中保持运行的能力来评估,也可以在压力周期后返回名义操作模式。为了充分利用氮化岩的特性,我们设计了一个能够在两个不同静止点上自我配置的LNA,从而可以将低噪声图(NF 50)和高1DB压缩点组合在设备输入(IP 1DB)。然后,图1所示的相同LNA #A能够在标称低噪声模式下运行(NF 50 = 0.95 db / ip 1db = 4 dbm),并在强烈的线性模式下< / div>
