工程细菌基因组或克隆为细菌人造染色体(BAC)的外源DNA取决于辅助质粒的使用,这些质粒的用法将所需的工具暂时输送到细菌中以进行修饰。完成了一项挑剔的作用后,需要固化辅助质粒。为了使这种有效的质粒通过条件扩增子维持或携带反选择标记。在这里,我们描述了可以通过化学诱导或抑制来维持或治愈的新条件质粒。我们的方法基于携带Ori6Kγ起源的质粒的依赖性,其复制起源于蛋白质的存在。基于ORI6Kγ的质粒是严格调控的条件构建体,但通常需要特殊的大肠杆菌菌株才能进行操作。为了避免这种情况,我们将π蛋白表达放在共表达的条件阻遏物的控制下。通过给药或去除化学物质来调节质粒的维护与迄今为止应用的任何其他条件扩增子完全兼容。在这里,我们描述了诱导位点特定重新组合的方法为例。但是,可以使用相同的策略来为基因组编辑方法(例如λred重组酶或CRISPR/CAS成分)的任何其他瞬时成分构建合适的辅助质粒。
microRNA(miRNA)在真核生物的许多发育和生理过程中扮演着基本角色。植物中的miRNA通常通过mRNA裂解或翻译抑制来调节其靶标。但是,哪种方法起着主要作用,这两个功能模式是否可以转移仍然难以捉摸。在这里,我们确定了一个miRNA,miR408-5p,该miRNA调节生长素/吲哚乙酸30(IAA30),这是一种通过大米中的切换动作模式在生长素路径中的关键阻遏物。我们发现,miR408-5p通常会抑制IAA30蛋白的翻译,但是在高生长素环境中,它会促进IAA30 mRNA的衰变,当它被过量生产时。我们进一步证明,理想的植物体系结构1(IPA1)是由miR156调节的SPL转录因子,通过与MiR408-5p前光线前启动子介导叶子倾斜度。我们最终表明MiR156-IPA1-MIR408-5P-IAA30模块可以由MiR393控制,MiR393沉默了生长素受体。一起,我们的结果定义了水稻中的替代生长素转导信号通路,涉及miR408-5p的功能模式切换,这有助于更好地理解动作机械以及植物中miRNA的合作网络。
摘要RNA识别基序(RRM)是自然界中最常见的RNA结合蛋白结构域。然而,含RRM的蛋白质仅在真核门中普遍存在,它们在其中扮演中心的调节作用。在这里,我们设计了一种与哺乳动物RNA结合蛋白Musashi-1的大肠菌中基因表达的正交后转录控制系统,该系统是具有神经发育作用的干细胞标记物,其中包含两个规范的RRM。在电路中,由于与Messenger RNA的N末端编码区域的特定相互作用及其对脂肪酸的反应,因此在转录中受到转录调节,并作为变构翻译阻遏物。我们通过评估一系列RNA突变体的体外结合动力学和体内功能,完全表征了种群和单细胞水平的遗传系统和单细胞水平,显示了报告基因表达的显着折叠变化以及潜在的分子机制。通过自下而上的数学模型很好地概括了系统的动态响应。此外,我们应用了用Musashi-1设计的转录后机制来特异性调节操纵子内的基因,实施组合调节并减少蛋白质表达噪声。这项工作说明了如何将基于RRM的调节适应简单的生物,从而在原核生物中添加了用于翻译控制的新调节层。
顺式调节元件(CRE),例如启动子和增强子,是直接调节基因表达的相对较短的DNA序列。CRE的适应性,通过其调节基因表达的能力来衡量,高度取决于Nu-Cleotide序列,尤其是特定的基序被称为转录因子结合位点(TFBSS)。设计高素质CRE对于治疗和生物工程应用至关重要。当前的CRE设计方法受两个主要缺点的限制:(1)他们通常依靠迭代优化策略来修改现有序列并易于局部Optima,并且(2)他们缺乏序列优化的生物学先验知识的指导。在此过程中,我们通过提出一种生成方法来解决这些局限性,该方法杠杆化的增强学习(RL)以微调预先训练的自动回旋(AR)模型。我们的方法通过得出基于综合推理的奖励来模拟激活剂TFBS并去除阻遏物TFBS,从而结合了数据驱动的生物学先验,然后将其集成到RL过程中。我们在两个酵母媒体条件下的启动子设计任务和三种人类细胞类型的增强剂设计任务中评估了我们的方法,这表明了其产生高素质CRE的能力,同时保持序列多样性。该代码可在https://github.com/yangzhao1230/taco上找到。
顺式调节元件(CRE),例如启动子和增强子,是直接调节基因表达的相对较短的DNA序列。CRE的适应性,通过其调节基因表达的能力来衡量,高度取决于Nu-Cleotide序列,尤其是特定的基序被称为转录因子结合位点(TFBSS)。设计高素质CRE对于治疗和生物工程应用至关重要。当前的CRE设计方法受两个主要缺点的限制:(1)他们通常依靠迭代优化策略来修改现有序列并易于局部Optima,并且(2)他们缺乏序列优化的生物学先验知识的指导。在此过程中,我们通过提出一种生成方法来解决这些局限性,该方法杠杆化的增强学习(RL)以微调预先训练的自动回旋(AR)模型。我们的方法通过得出基于综合推理的奖励来模拟激活剂TFBS并去除阻遏物TFBS,从而结合了数据驱动的生物学先验,然后将其集成到RL过程中。我们在两个酵母媒体条件下的启动子设计任务和三种人类细胞类型的增强剂设计任务中评估了我们的方法,这表明了其产生高素质CRE的能力,同时保持序列多样性。该代码可在https://github.com/yangzhao1230/taco上找到。
细胞的命运和身份需要及时激活谱系特异性和伴随抑制替代性linege基因。该过程是如何表观遗传编码的,仍然在很大程度上未知。在骨骼肌干细胞(MUSC)中,肌源性调节因子在肌源性程序的顺序激活中起着关键作用,但是,对于抑制替代谱系基因的抑制如何有助于该程序。在这里,我们报告说,MUSC中的大量非Lineage基因保留了宽松的染色质标记,但被抑制了转录。我们表明,主表观遗传调节剂,阻遏物元件1-沉默转录因子(REST),也称为神经元素限制性沉默因子(NRSF),在抑制这些非肌肉谱系基因和发育调控基因的抑制中起着关键作用。缺乏功能性休息的MUSC表现出改变的表观遗传和转录特征,并且自我更新受损。因此,MUSC通过细胞凋亡逐渐进入细胞死亡,干细胞池经历耗尽。缺乏休息的骨骼肌显示出再生并显示肌纤维萎缩。总体而言,我们的数据表明,REST通过在成年小鼠中抑制多个非肌肉谱系和发育调节的基因来保护肌肉干细胞身份和存活中起关键作用。
磷营养很长时间以来一直在影响植物的花卉转变,但潜在的机械主义尚不清楚。拟南芥磷酸转运蛋白磷酸盐1(PHO1)在从根到芽的磷酸转移中起关键作用,但是它是否以及如何调节花卉转变是未知的。在这里,我们表明PHO1的敲除突变延迟在长期和短期条件下开花。Pho1突变体的晚开花可以通过玫瑰花结或射击顶点的Pi补充来部分挽救。嫁接测定法表明,PHO1突变体的晚开花是磷酸盐从根到芽的磷酸易位受损的结果。SPX1和SPX2的基因敲除突变,这是两个磷酸盐饥饿反应的两个负调节剂,部分挽救了PHO1突变体的晚期流动。pho1在开花时间调节中对Pho2(Pho2的负调节剂)表示同义。损失PHO1会抑制某些花卉激活剂的表达,包括编码佛罗里语的FT,并在芽中诱导某些花卉阻遏物的表达。遗传分析表明,至少对于PHO1突变体的晚开花,至少部分缩进的茉莉酸信号传导。此外,我们发现pho1的水稻pho1; 2,Pho1的同源物在花卉过渡中起着类似的作用。这些结果表明PHO1整合了磷营养和开花时间,并且可以用作调节植物中磷营养介导的开花时间的潜在目标。
目前许多基因工程治疗方法的一个显著限制是它们对治疗效果的强度、时间或细胞环境的控制有限。合成基因/基因电路是一种合成生物学方法,可以控制特定 DNA、RNA 或蛋白质的生成、转化或消耗,并提供对基因表达和细胞行为的精确控制。它们可以通过仔细选择启动子、阻遏物和其他遗传成分来设计执行逻辑操作。在 Espacenet 中进行了专利搜索,结果选出 38 项专利,其中有 15 个最常见的国际分类。专利实施方案被分类为治疗分子的递送、传染病的治疗、癌症的治疗、出血的治疗和代谢紊乱的治疗。所选基因电路的逻辑门被描述以全面展示它们的治疗应用。合成基因电路可以定制以精确控制治疗干预,从而实现针对个体患者需求的个性化治疗,提高治疗效果并最大限度地减少副作用。它们可以是高度灵敏的生物传感器,通过精确监测各种生物标志物或病原体并适当合成治疗分子来提供实时治疗。合成基因电路还可能导致开发先进的再生疗法和可植入的生物装置,这些装置可按需产生生物活性分子。然而,这项技术面临着商业盈利能力的挑战。基因电路设计需要针对特定应用进行调整,并且可能存在多种调节剂毒性、同源重组、上下文依赖性、资源过度使用和环境多变性等缺点。
理由:核(NP)纤维化是椎间盘变性(IVDD)的促成因素,该因素缺乏有效的治疗。这项研究的重点是阐明TGF-β信号阻遏物滑雪物在NP纤维化中的作用和机制,并探索其治疗潜力。方法:单细胞RNA测序(SCRNA-SEQ)用于研究纤维化核细胞细胞(NPC)亚群并评估TGF-β信号传导激活。将靶向纤维化NPC标记FAP和SKI mRNA的单链可变片段(SCFV)的两个重组质粒共转染到HEK-293T细胞中,以产生功能化的外泌体(EX SKI+SCFV)。将EX SKI+SCFV添加到明胶/氧化的藻酸钠水凝胶中产生了名为GEL@ex Ski+SCFV的pH响应外部/水凝胶系统。通过RNA测序,分子对接和共免疫沉淀评估了Gel@Ex Ski+SCFV的治疗效果和基础机制。结果:纤维化的NPC子集的特征是FAP升高和滑雪表达降低,以及TGF-β信号传导途径的激活。滑雪过表达降低了TGF-β处理的NPC中的纤维化。EX SKI+SCFV成功地将滑雪mRNA传递到表达FAP的纤维化NPC中。gel@ex Ski+SCFV具有良好的机械性能,可降解性,注射性和生物相容性。gel@ex Ski+SCFV有效地减轻了大鼠的NP纤维化和IVDD。RNA测序,分子对接和共免疫沉淀显示滑雪可以与FOXO3相互作用以抑制TGF-β信号通路。
物质使用障碍是一种慢性疾病,也是世界各地导致残疾的主要原因。NAc 是介导奖励行为的主要大脑中枢。研究表明,接触可卡因与 NAc 中等棘神经元亚型 (MSN)、多巴胺受体 1 和 2 富集的 D1-MSN 和 D2-MSN 的分子和功能失衡有关。我们之前报道过,反复接触可卡因会在 NAc D1-MSN 中诱导转录因子早期生长反应 3 (Egr3) mRNA,而在 D2-MSN 中降低该mRNA。在这里,我们报告了在雄性小鼠中反复接触可卡因会诱导 Egr3 辅阻遏物 NGFI-A 结合蛋白 2 (Nab2) 的 MSN 亚型特异性双向表达的发现。使用 CRISPR 激活和干扰 (CRISPRa 和 CRISPRi) 工具结合 Nab2 或 Egr3 靶向的 sgRNA,我们模拟了 Neuro2a 细胞中的这些双向变化。此外,我们研究了雄性小鼠反复接触可卡因后 NAc 中组蛋白赖氨酸脱甲基酶 Kdm1a 、 Kdm6a 和 Kdm5c 的 D1-MSN 和 D2-MSN 特异性表达变化。由于 Kdm1a 在 D1-MSN 和 D2-MSN 中表现出双向表达模式,就像 Egr3 一样,我们开发了一种光诱导的 Opto-CRISPR-KDM1a 系统。我们能够下调 Neuro2A 细胞中的 Egr3 和 Nab2 转录本,并引起与我们在小鼠反复接触可卡因模型的 D1-MSN 和 D2-MSN 中观察到的类似的双向表达变化。相反,我们的 Opto-CRISPR-p300 激活系统诱导了 Egr3 和 Nab2 转录本并引起相反的双向转录调控。我们的研究揭示了可卡因作用中特定 NAc MSN 中 Nab2 和 Egr3 的表达模式,并使用 CRISPR 工具进一步模拟这些表达模式。