Lapuka O.G.,主编,技术科学博士,教授; Malkin V.A.,副主编,技术科学博士,教授; Grishkevich M. M.,秘书,军事学候选人,副教授; Belko V. M.,技术科学候选人,副教授;博格丹诺夫·D·尤.,军事科学博士,副教授; Vashkevich V. R.,技术科学候选人,副教授; Grinyuk V.I.,军事科学候选人,教授; Ilyev I. G.,技术科学候选人,副教授; Kolodyazhny V.V.,军事科学博士,教授; Kostyukovich S. N.,技术科学候选人,副教授;克谢诺丰托夫 V.A.,哲学系候选人,副教授; Kurenev V.A.,技术科学博士,教授; Nizhneva N.N.,教育学博士,教授;奥西波夫 G.A.,军事科学候选人,副教授; Pylinsky M.V.,军事科学博士,副教授;丘布里克 V.G.,军事科学候选人,副教授;舍甫琴科 V.S.,技术科学博士,教授;尤什克维奇 T.P.,教育学博士,教授; Yarmolik S. N.,技术科学候选人,副教授。
基辅——乌克兰首都基辅警方已对一起美国大使馆工作人员遇袭事件展开调查。警方在 10 月 1 日的一份声明中表示,一名女子前一天在基辅舍甫琴科区铁路线附近的公园被发现昏迷,头部受伤。声明称,这名女子的身份尚未透露,她被紧急送往医院,数小时后死亡。声明还补充说,在女子手提包中发现的文件显示,她是美国大使馆的一名工作人员。声明还提供了描述潜在袭击者的详细信息。“[袭击者] 可能是一名 30-40 岁的男子,身高 1.9-2.0 米,身穿黑色短裤、深蓝色运动鞋和 T 恤,深色头发,”声明说。美国驻基辅大使馆 9 月 30 日在推特上表示,袭击受害者是一名美国公民。“我们很遗憾地报告美国驻基辅大使馆社区一名美国成员的死亡。美国驻基辅大使馆官员目前正在与当局合作,以确定死亡情况,”该声明说,该声明也出现在大使馆的 Facebook 页面上。
▪ 发电厂扩建和恢复计划(12 个地点的 10 个不同发电厂,1,500 MWel),沙特阿拉伯 ▪ 科泽尼采发电厂(1,075 MWel),波兰 ▪ 奥斯特罗莱卡发电厂(1,000 MWel),波兰 ▪ 亚沃日诺发电厂(910 MWel),波兰 ▪ Shuqaiq II 独立水电项目(850 MWel),沙特阿拉伯 ▪ Qua Iboe 电力项目(500 MWel),尼日利亚 ▪ Łagisza 发电厂(高达 500 MWel,300 MWth),波兰 ▪ Żerań 热电联产厂(450 MWel,250 MWth),波兰 ▪ 库尔纳发电厂(330 MWel),孟加拉国 ▪ 加尔达巴尼联合循环发电厂(230 MWel),格鲁吉亚 ▪ Zofiówka 热电联产厂(80 MWel, 115 MWth),波兰 ▪ 扎布热热电联产电厂(75 MWel,145 MWth),波兰 ▪ 琴斯托霍瓦热电联产电厂(65 MWel,120 MWth),波兰 ▪ Bielsko-Biała 热电联产电厂(50 MWel,106 MWth),波兰 ▪ Grossenkneten 热电联产电厂(30 MWel),德国
最近发现的Altermagnetic材料中的超导性具有针对基本物理和技术应用的巨大前景。在这项工作中,我们表明,Altermagnets中的特征性旋转sublattice锁定对可能的超导配对构成了严格的限制。尤其是我们发现,超导性,均匀的s波旋转 - 单琴配对的最常见形式是在altermagnet中无法实现的。考虑到平方晶格上A d x 2 -y 2-波动altermagnet的有效模型,我们发现最有可能的自旋 - 单词配对的形式具有d x 2 -y 2-或扩展的S波对称性。我们还发现,不允许使用相等的三重态P波配对的最简单形式,但只能以混合旋转三键p波状状态存在。我们在相互作用诱导的Altermagnetism模型中验证了这些限制,在该模型中,我们还建立了它们的有限摩托符合配对的有效性。此外,我们讨论了奇数超导配对的可能的配对对称性。由于我们的结果的普遍性,它们适用于固有的超导性和接近性诱导的超导性超导性的超导性。
摘要:使用三角大学核实验室中的中子束5至27 MeV,使用微琴探测器测量塑料闪烁体EJ-260的非线性能量响应。第一阶和二阶Birks的常数是从数据中提取的,发现为𝑘=(8。70±0。93)×10 - 3 g / cm 2 / mev和𝑘=(1。< / div>42±1。 00)×10-5(g / cm 2 / meV)2。 该结果涵盖了一个独特的能量范围,该能量范围与反应器反向β衰变检测器中的快速中子背景具有直接相关性。 这些测量结果将改善塑料闪烁体检测器的能量非线性建模。 特别是,更新的能量响应模型将改善基于Chandler反应器中微子检测器技术的检测器的快速中子建模。42±1。00)×10-5(g / cm 2 / meV)2。该结果涵盖了一个独特的能量范围,该能量范围与反应器反向β衰变检测器中的快速中子背景具有直接相关性。这些测量结果将改善塑料闪烁体检测器的能量非线性建模。,更新的能量响应模型将改善基于Chandler反应器中微子检测器技术的检测器的快速中子建模。
tp@infosoft.ua 编程理论与技术系 计算机科学与控制论学院 塔拉斯·舍甫琴科 基辅国立大学 格鲁什科娃学院 4-D,基辅,乌克兰,03680 摘要 从过去的两个时代开始,人工智能就引起了所有研究领域研究人员的关注。视频编辑是列表中开始利用人工智能 (AI) 的支持的任务。由于人工智能承诺让技术更好地利用人类生活,尽管视频编辑技术并不新鲜,但它正在采用人工智能等新技术,为视频编辑者和用户提供更强大、更复杂的功能。与其他技术一样,在不久的将来,视频编辑也将通过人工智能的强大力量得到促进。已经有很多研究使用人工智能进行视频编辑,但还没有全面的文献综述系统地将所有这些工作放在一页上,以便新研究人员可以找到该领域的研究空白。在这项研究中,我们进行了一项称为系统映射研究的静态方法,以找到预先提出的研究问题的答案。本研究的目的和目标是找到我们讨论主题中的研究空白。关键词:视频编辑、人工智能、系统映射研究。
摘要:二维共价有机框架(2D COF)含有杂型琴,从理论上鉴定为具有可调的,dirac-cone的带状结构的半导体,预计可为下一代弹性电子的高电荷运输能力提供理想的高电荷机动性。但是,这些材料的批量合成很少,现有的合成方法提供了对网络纯度和形态的有限控制。在这里,我们报告了苯甲酮 - 伊米氨酸保护的氮基因(OTPA)(OTPA)和苯二噻吩二醛(BDT)之间的转介反应,该苯二醛(BDT)提供了一个新的半导体COF网络OTPA-BDT。将COF作为多晶粉和具有控制晶体方向的薄膜。暴露于适当的P型掺杂剂Tris(4-溴苯基)六氯乙酸苯甲酸苯二氧化苯甲酸酯后,将氮化基因淋巴结很容易被氧化为稳定的自由基阳离子,此后,网络的结晶度和方向得以维持。面向孔掺杂的OTPA-BDT COF膜表现出高达1.2×10 –1 s cm –1的电导率,这是迄今为止据报道的最高报告的亚胺连接2D COF。
Mykhailo Samus 是罗马尼亚新战略中心的非常驻专家,也是乌克兰新地缘政治研究网络的主任。在媒体以及安全和国防分析与咨询领域工作了 20 年后,Mykhailo 成为了国际关系、国家复原力和新一代战争领域的资深研究员。他在乌克兰武装部队服役 12 年,获得了基辅舍甫琴科国立大学新闻学院的国际新闻学硕士学位 (2007 年)。他的职业生涯始于《国防快报》的记者生涯,后来成为《出口管制通讯》杂志的主编,然后担任陆军、改造和裁军研究中心的副主任。他是欧盟 CACDS 布拉格办事处(捷克共和国)的创始人(2009 年),负责协调 CACDS 的国际活动、其区域部门以及与北约和欧盟的项目。 Mykhailo 还曾担任 CACDS 分析公报《挑战与风险》的编辑委员会成员。现在,Mykhailo 是新国际项目“新地缘政治研究网络”的负责人和推动者之一,该项目是一项独立且无党派的倡议,旨在为渴望塑造地缘政治新面貌的研究人员、学者、专家、记者和知识分子提供智库平台。
摘要|背景:医师科学家在临床实践和科学研究的交集中占据了独特而关键的地位,但是由于系统挑战,包括时间限制,财务障碍和机构支持不足,它们变得越来越罕见。本文探讨了医师,研究人员,科学家和医师科学家之间的概念和历史差异,突出了他们对全球健康,决策和医疗创新的独特贡献。历史例子,例如罗伯特·科赫(Robert Koch)和维尔琴·鲁道夫(Virchow Rudolf),体现了医师科学家在进步医学方面的变革性影响。人工智能(AI)的兴起为这些专业人员带来了新的机会和挑战,因为AI可以增强其在研究和患者护理中的双重作用。概念化:但是,为了维持和发展医师 - 科学家的劳动力,需要进行重大变化,包括更好的经济激励措施,受保护的研究时间和更强大的指导计划。没有这种支持,医疗创新和全球健康的未来可能会受到危害。本文倡导重点关注培养医师科学家,强调其在弥合板凳和床边之间差距的必不可少的作用,并确保科学发现转化为人类健康和福祉的切实改善。
、闫彤 1 、陈浩然 1 、王嘉华 1 、王英怡 4 、杨叶琴 5 、项略 1 、池在龙 1 、任开群 2 、林斌 6 、林戈 7,8 、李劲松 3,4 、刘勇 1,* 和顾锋 1,2,9,* 来自 1 温州医科大学附属眼视光学院、卫生部视觉科学国家重点实验室、卫生部重点实验室和浙江省眼视光重点实验室,浙江省温州;2 湖南师范大学医学院、湖南省模式动物与干细胞生物学重点实验室、生殖与转化医学湖南省工程研究中心,长沙,中国; 3 中国科学院上海生物化学与细胞生物学研究所、上海分子男科学重点实验室、细胞生物学国家重点实验室、分子细胞科学卓越中心,上海,中国;4 上海科技大学生命科学与技术学院,上海,中国;5 浙江中医药大学护理学院,浙江杭州,中国;6 香港理工大学眼科视光学院,香港,中国;7 中信湘雅生殖与遗传医院,湖南省生殖与遗传临床研究中心,长沙,中国;8 中南大学基础医学院生殖与干细胞工程研究所,长沙,中国;9 湖南师范大学附属广秀医院(湖南广秀医院),长沙,中国