首先,需要确定现有文本的局限性,以便工作组的原则或准则能够解决这些问题。1979 年《管理各国在月球和其他天体上的活动的协定》的某些原则和准备工作可能对工作组的工作有意义(见下文)。由于资源治理问题并不完全是新问题,因此已经存在许多文本和大量国家和国际层面的法律工作,这些应该可以启发工作组的工作。工作组可以特别研究《阿尔忒弥斯协定》和海牙空间资源治理工作组工作产生的《基础模块》。还可以参考某些国家通过的管理空间资源活动的国家立法和监管文本。
7.5.1. 空间技术创新网络(SpIN) _______ 105 7.5.2. 地表水和海洋地形(SWOT)任务 _____________________________________ 105 7.5.3. 毅力号任务 ____________________ 106 7.5.4. 阿尔忒弥斯 1 号月球任务 __________________ 106 7.5.5. 伽马射线爆发(GRB) __________________ 106 7.5.6. GLASS 报告 2022 ______________________ 107 7.5.7. 世卫组织发布《2022 年世界疟疾报告》 107 7.5.8. 赢得乙肝母亲的支持 (WOMB) ___________________________________________ 107 7.5.9. 2010 年至 2021 年间 HIV 感染率下降 46%:NACO _________________________ 107 7.5.10. 2005–2021 年结核病 (TB) 研究资金趋势报告 _________________________________ 108
另一个关键数据点是 1969 年人类登陆月球的时间。当时距离月球 0.0026 个天文单位,距离太阳系并不算太远,但这是一个开始。目前,探索的下一步仍是推测性的,但作者为人类何时登陆火星设定了两种不同的情景。考虑到发射窗口,他们估计第一批人类将在 2038 年踏上这颗红色星球,这也是 NASA 的阿尔忒弥斯计划所计划的时间。但他们也认识到,鉴于最近人类太空探索计划的拖延历史,这一时间可能最晚要到 2048 年。利用这个单独的起点,他们制定了其余探索步骤的“延迟”时间表,由于它是指数级的,因此它对其他里程碑的日期有相应的巨大影响。
目前,《阿尔忒弥斯协定》已涵盖 40 多个国家,它们同意开采和利用太空资源,以支持安全和可持续的太空探索,同时国际层面也在积极推行更广泛的法律框架。大多数大型航空航天公司和过去几年出现的数十家初创公司都将自己定位在太空资源价值链的各个环节,凸显了人们对这一领域日益增长的兴趣和机遇。目前的计划重点是将月球作为机器人和人类重新探索的目的地,同时也为探索小天体和红色星球铺平了道路,现在非常清楚的是,太空资源正越来越接近于实现未来的探索,将经济活动扩展到地球以外,并增加地球的社会效益。
读经计划 __ 创世记 __ 出埃及记 __ 利未记 __ 民数记 __ 申命记 __ 约书亚记 __ 士师记 __ 路得记 __ 撒母耳记上 __ 撒母耳记下 __ 列王记上 __ 列王记下 __ 历代志上 __ 历代志下 __ 以斯拉记 __ 尼希米记 __ 以斯帖记 __ 约伯记 __ 诗篇 __ 箴言 __ 传道书 __ 雅歌 __ 以赛亚书 __ 耶利米书 __ 耶利米哀歌 __ 以西结书 __ 但以理书 __ 何西阿书 __ 约珥书 __ 阿摩司书 __ 俄巴底亚书 __ 约拿书 __ 弥迦书 __ 那鸿书 __ 哈巴谷书 __ 西番雅书 __ 哈该书 __ 撒迦利亚书 __ 玛拉基书
我们的全球伙伴关系还延伸到太空,美国和日本在探索太阳系和重返月球方面处于领先地位。我们欢迎今天签署关于加压月球车探索月球表面的实施安排。根据协议,日本将提供并维护一辆加压月球车,而美国则计划在未来的阿尔特弥斯任务中为日本宇航员分配两次登月机会。两位领导人宣布了一个共同目标,即在满足关键基准的情况下,日本宇航员将成为在未来的阿尔忒弥斯 (Artemis) 任务中首位登陆月球的非美国公民。为实现这一目标,美国和日本计划深化在宇航员培训方面的合作,同时管理此类富有挑战性和启发性的月球任务带来的风险。我们还宣布在高超音速滑翔飞行器(HGV)和其他导弹的低地球轨道(LEO)搜索和跟踪星座方面开展双边合作,包括与美国工业界的潜在合作。美日联合领导人声明 面向未来的全球合作伙伴 开拓太空新领域 我们的全球伙伴关系延伸到太空,美国和日本正在引领探索太阳系和重返月球的道路。今天,我们欢迎签署月球表面探索实施协议,根据该协议,日本计划提供并维持加压月球车的运行,而美国计划在未来的阿尔特弥斯任务中为日本分配两次宇航员登月机会。 两国领导人宣布了一个共同目标,即假设实现重要基准,日本国民将成为未来阿尔特弥斯任务中第一位登陆月球的非美国宇航员。美国和日本计划深化宇航员培训方面的合作,以促进这一目标的实现,同时管理这些具有挑战性和鼓舞人心的月球表面任务的风险。 我们还宣布在低地球轨道探测和跟踪星座方面进行双边合作,用于高超音速滑翔飞行器等导弹,包括与美国工业界的潜在合作。
未托管的热萃取,以及田间多个钻孔热交换器(BHES)的邻接性,可能导致地面上的不良热条件。无法正确控制的热异常被认为是闭环地热系统的严重风险,因为对地面的有害影响可能会导致性能严重,或者使操作系统与监管人日期的兼容性无效。本文提出了一个灵活的框架,用于整个生命周期中BHE领域的合并模拟优化。所提出的方法解释了地下特性和能耗的不确定性,以最大程度地减少操作过程中的热量提取引起的温度变化。描述性不确定性是作为监视温度与模拟温度变化的偏差引入的,而能量需求的变化似乎是针对预定需求的过量或不足的费用。通过通过温度测量来更新地面的热条件,在操作周期内连续执行优化,并能够生成修订后的负载分布。 在这项研究中,两个具有五个和26个铃的磁场被认为证明了该方法的性能。 顺序优化通过为更具战略性的负载平衡模式提供基础,并在每种BHE配置中分别提供约2.9 k和8.9 K的较低较低的TEM Perature异常,从而超过单步优化。在操作周期内连续执行优化,并能够生成修订后的负载分布。在这项研究中,两个具有五个和26个铃的磁场被认为证明了该方法的性能。顺序优化通过为更具战略性的负载平衡模式提供基础,并在每种BHE配置中分别提供约2.9 k和8.9 K的较低较低的TEM Perature异常,从而超过单步优化。
美国宇航局、商业行业和国际合作伙伴正在拓展人类向太空的探索范围,并为月球门户、阿尔忒弥斯和最终的载人火星任务设定了里程碑。任何长期载人航天任务的一个关键要素是环境控制和生命支持系统 (ECLSS),它由多个子系统组成,包括维持可呼吸大气的空气再生子系统。为了匹配深空探索的计划里程碑,全球都在努力开发下一代 ECLSS。因此,在单个 ECLSS 单元的研究和开发方面取得了许多突破。本文回顾了空气再生领域的传统和新技术,包括美国、日本和欧洲在航天器栖息地中捕获二氧化碳 (CO 2 ) 和生成氧气 (O 2 ) 的技术。提到已发布的故障模式以促进对未来潜在生命支持系统的可修复性和可维护性的讨论。
