抽象的植物专用代谢物(PSM)是多种多样的化合物,在适应各种非生物和生物胁迫的植物适应中具有多方面的作用。psms经常分泌到根根部,这是根周围的一个小区域,它们促进了植物与土壤微生物之间的相互作用。PSM塑造了可能影响植物生长和对不良条件的耐受性的宿主特异性根际微生物群落。植物突变体在PSM生物合成中有缺陷有助于揭示每个PSM在根际中植物 - 微生物群相互作用中的作用。最近,已使用各种方法通过体外方法或通过植物中的锅中的添加到土壤中直接提供PSM。本综述着重于直接PSM应用方法揭示根际植物 - 微生物群相互作用的可行性,并讨论了将知识应用于根际特征的未来工程学的可能性。
抽象的植物专用代谢物(PSM)是多种多样的化合物,在适应各种非生物和生物胁迫的植物适应中具有多方面的作用。psms经常分泌到根根部,这是根周围的一个小区域,它们促进了植物与土壤微生物之间的相互作用。PSM塑造了可能影响植物生长和对不良条件的耐受性的宿主特异性根际微生物群落。植物突变体在PSM生物合成中有缺陷有助于揭示每个PSM在根际中植物 - 微生物群相互作用中的作用。最近,已使用各种方法通过体外方法或通过植物中的锅中的添加到土壤中直接提供PSM。本综述着重于直接PSM应用方法揭示根际植物 - 微生物群相互作用的可行性,并讨论了将知识应用于根际特征的未来工程学的可能性。
陆稻接种或混合接种多功能根际细菌可促进植株生长,特别是根系生长。因此,本研究旨在评价接种或混合接种固氮螺菌和芽孢杆菌对陆稻早期发育的影响。试验采用完全随机设计,设4个处理,10次重复,共40个地块。处理为:1)Ab-V5(巴西固氮螺菌),2)BRM 63573(芽孢杆菌),3)Ab-V5 + BRM 63573 混合接种,4)对照(不含根际细菌)。接种或混合接种多功能根际细菌Ab-V5和BRM 63573对陆稻初期发育有积极作用。接种分离物 BRM 63573 对根长、茎部和总生物量有显著影响,而接种分离物 Ab-V5 对根长和根系及总生物量的产生有显著影响。共接种处理对直径、体积、总表面积、根系生物量和总生物量等变量有显著影响。对照处理(无多功能根际细菌)
- N为31.94和29.58%,可用的磷(AP 53.21和27.19%),RR和ZZ中可用的钾(AK 42.43和11.92%)的可用钾(AK 42.43和11.92%)的含量超过RZ和ZR。用相同品种(RR,ZZ)返回的稻草可显着提高根际微生物群落的丰富性和多样性。品种Z9(处理Z)的微生物多样性大于品种ROC22(处理R)的微生物多样性。在根际中,有益微生物的相对丰度Gemmatimonadaceae,Trechispora,链霉菌,Chaetomium等在稻草返回后增加。甘蔗稻草增强了假单胞菌和曲霉的活性,从而提高了甘蔗的产量。Z9成熟时的Z9根际微生物群落的丰富性和多样性增加。在ROC22中,细菌多样性增加,真菌多样性减少。这些发现共同表明,Z9稻草返回的影响比ROC22对根际微生物的土壤功能和甘蔗产生的活性更有益。
摘要 摘要 根际微生物种群与植物建立了许多重要的相互作用,从可持续农业生产的角度来看,研究根际微生物种群至关重要。对各种植物作物的研究表明,尽管土壤的微生物多样性很复杂,但细菌微生物组具有多种功能。更好地了解植物与微生物组之间相互作用的分子机制,可以使植物更好地发育,这与微生物的有益作用有关。因此,本综述旨在描述根际微生物组的特征以及土壤和根之间的相互作用,以及影响细菌活动的信号,以及分子技术对分析微生物活动的重要性。
溶血杆菌属。是各种植物种类的根际的常见细菌居民。然而,根际条件对生理学的影响仍相对研究。提供有关溶血杆菌行为的线索。在这个生态位中,我们在共同的合成生长培养基(LBA)上研究了从烟草根际(LBA)和含有植物根瘤菌(RMA)含有的成分的生长培养基上,从烟草根际(LBA)和含有的生长培养基上研究了capsici az78(az78)的生理学。RMA上AZ78菌落周围的光环的存在是与生长培养基成分差异有关的第一个可见效应,它与大型外环的形成相对应。与LBA相比,RMA中可用的营养量较低,与编码CAMP受体样蛋白(CLP)的基因表达更高,负责细胞运动和生物膜形成调节。RMA上的AZ78细胞运动是动的,配备了细胞表面附属物,并以嵌入密集的原纤维层的小组组织。与LBA相比,质谱成像的代谢分析表明,AZ78在RMA上产生的分析物的多样性增加。尤其是鉴定出具有抗生素活性的推定环状脂质肽,多环芳烃,多环芳烃,环状大酰酰胺和其他推定的次级代谢产物。总的来说,这项研究中获得的结果揭示了AZ78通过其移动,形成生物膜和释放二级代谢产物的能力在根际中繁衍生息的潜力。
At the beginning of this century climate change was predicted to cause a rise in global average tempera- ture of between 1 to 7 °C compared to pre-industrial levels by the end of the twenty-first century Such climate change is a consequence of unprecedented rates of greenhouse gas emissions into the atmos- phere caused by global industrialization, notably rais- ing the atmospheric pCO 2 to levels (> 400 ppm) not recorded for over 80万年,不仅对温度,而且对全球天气模式和降水产生影响(IPCC 2023)。当前的预测在这种温度变化的下边界不太乐观,到截至世纪末(2020年皇家学会),温度升高在2.6到4.8°C之间的预测可能达到800 ppm。根据当前的记录,2023年将连续第10年全球温度平均比工业水平高1°C以上,并且在全球范围内是记录中最温暖的一年(根据英国会议办公室,2023年的预测高于工业水平,高于工业水平1.2°C,2023年)。气候变化显然正在发生,社会已经接受,温度升高应仅限于1.5°C以限制负面影响,但是除非在未来几年遵循严格的缓解措施,否则这种愿望似乎极不可能(IPCC 2023)。
INTRODUCTION Rhizosphere bacteria that positively influence plant growth and productivity of commercially important crops are commonly referred to as Plant Growth Promoting Rhizobacteria (PGPR) and include bacteria of the genera Azotobacter, Azospirillum , Arthrobacter, Bacillus, Agrobacterium, Rhizobium, Flavobacterium, Burkholderia, Enterobacter,克莱伯斯ella,假单胞菌,xanthomonas和serratia。根渗出液的分泌有助于调节微生物动力学及其与植物的相互作用,进而在促进植物生长中起着重要作用。此外,根际中的这种共生相关性还赋予对由真菌,细菌和病毒病原体引起的各种疾病的保护。这些细菌直接通过使用刺激性生长素和细菌的组合或通过刺激性生长素和细菌的形式组成的刺激性的生长素,gibberellins和componial compan和compoa,并通过刺激性的生产力和细菌来通过刺激性的生长蛋白和胞质的组合来直接影响植物的生长和分泌。 N.I.K.al-Barhawee和F.A.al-Wazzan。2025。从新分子表征的根瘤菌菌株中产生吲哚-3-乙酸的估计。农业科学全球创新杂志13:85-94。[2024年9月2日收到; 2024年10月6日接受;出版于2025年1月1日]
土壤微生物组高度多样,为了改善其在生物地球化学模型中的表示,可以利用微生物基因组数据来推断关键功能性状。可以预测,可以预测,可以预测,可以预测,可以预测由基于理论的层次结构框架纳入基于理论的层次框架,可以预测由单个性状相互作用引起的新兴行为。在这里,我们将理论驱动的底物摄取动力学预测与基于基因组的基于基因组性状的动态能量预算模型相结合,以预测土壤细菌中新兴的寿命和权衡。应用于植物微生物组系统时,该模型准确地预测了与观察结果一致的不同底物练习策略,从而发现了微生物增长率和效率之间的资源依赖性权衡。例如,在以后的植物生长阶段受到有机酸的渗出剂的固有变慢的微生物,表现出增强的碳利用效率(产量),而无需牺牲生长速度(功率)。这种见解对将植物的根源碳保留在土壤中有影响,并突出了数据驱动的基于性状的基于性状的方法,以改善生物地球化学模型中的微生物代表。
•国家或年级,年际温度变化(Dell,Jones and Olken 2012; Burke,Hsiang and Miguel,2015年; Nath,Ramey和Klenow,2023年; Kotz等;2024)•全球平均年际温度变化(Bilal和Danzig,2024)•El-Nino驱动的变化(Callahan and Mankin,2023)•全球,低频温度变化(Bastien-Olvera等人(Bastien-Olvera等)2022)