首先,坚定地实施了国内需求扩展的战略。建立一个完整的内部需求体系对中国的长期发展以及长期和平与稳定的影响。自[1978年],尤其是加入世贸组织之后,中国进入了国际大流通(国国大循大循)以来,尤其是在加入世贸组织之后,成立了市场和资源(例如矿产资源)(例如,海外的两个负责人)1和“工厂”和“工厂”的发展模型。这在中国占领经济全球化机会,经济实力的迅速增加以及人民生计的改善中发挥了重要作用。近年来,经济全球化遇到了逆风,这种大流行可能会加剧反全球化趋势。随着国家转变的趋势显然在国家之间的增长,中国发展面临的外部环境可能会发生重大变化。实施内部需求扩展策略是应对大流行的影响的必要条件。这是维持中国经济的长期,可持续和健康发展的必要条件,这是满足人们对高水平生活水平的不断增长的需求(美好生活)的必要条件。
13植物的邻里环境可以改变其与其他生物的相互作用,但对14这些动态的发生鲜为人知,尤其是在土壤微生物中。15个根际土壤中的微生物群落受许多因素的影响,包括非生物条件和根源信号。在16个特定的根部,根渗出液对根际组装有很强的影响,对非生物17条件的变化做出反应,并帮助植物与邻居相互作用。因此,我们预测根渗出量可能在邻居引起的根际社区的转变中起着核心作用。我们进行了一项温室19实验,以测试这一点,并确定焦点细菌群体如何在不同邻居旁边发生的斑点植物,即20个Panicum virgatum,以及这些偏移是否通过邻居诱发的根部渗出变化介导21。我们发现,邻居改变了焦点植物22个渗出液和根际群落,当焦点植物旁边是23个最有竞争力的邻居Rudbeckia hirta时,变化是最大的,这降低了焦点植物的生长和氮24的吸收。几个因素导致了邻居对根际组装的影响,包括邻居25个诱发的氮限制期间根渗出液的变化和来自26个邻居根的根部的微生物溢出。使用额外的土壤孵育,我们还发现,这些变化对土壤养分的影响比对微生物组装具有更大的影响。总体而言,我们表明邻居28影响彼此的微生物组,并突出显示了邻居诱导的根渗出液的变化,这是一种可能发生的29个机制。这项工作表明,根际组装在30个混合物种社区中可能有所不同,因此强调了考虑31个邻里环境的微生物组研究的需求。
放牧干扰可改变植物根际微生物群落结构,从而改变反馈机制,促进植物生长或诱导植物防御。然而,人们对这种变化在不同放牧压力下如何发生和变化,以及根部代谢物在改变根际微生物群落组成中的作用知之甚少。本研究研究了不同放牧压力对微生物群落组成的影响,并利用代谢组学方法探索了不同放牧压力改变根际微生物组的机制。放牧改变了微生物群落的组成、功能和共表达网络。在轻度放牧(LG)下,一些腐生真菌,如香菇属、Ramichloridium 属、Ascobolus 属。和 Hyphoderma sp. 显著富集,而在重度放牧 (HG) 下,潜在有益的根际细菌,如 Stenotrophomonas sp.、Microbacterium sp. 和 Lysobacter sp. 显著富集。有益的菌根真菌 Schizothecium sp. 在 LG 和 HG 中均显著富集。此外,所有富集的有益微生物都与根系代谢物呈正相关,包括氨基酸 (AA)、短链有机酸 (SCOA) 和生物碱。这表明这些显著富集的根际微生物变化可能是由这些差异性根系代谢物引起的。在放牧压力下,推测根系代谢物,尤其是氨基酸如L-组氨酸,可能调控特定的腐生真菌参与物质转化和能量循环,促进植物生长。此外,为了缓解高放牧压力,提高植物的防御能力,推测根系在放牧干扰下会主动调节这些根系代谢物如氨基酸、中链氨基酸和生物碱的合成,然后分泌它们来促进一些特定的促进植物生长的根际细菌和真菌的生长。总之,禾本科植物可以通过改变根系代谢物的组成来调控有益微生物,在典型的草原生态系统中,不同的放牧压力下,其响应策略也不同。
微生物群移植是管理植物性疾病的强大工具。这项研究研究了微生物群移植对棉叶毛皮疾病(CLCUD)抗性的影响,该物种长度良好,但对生物胁迫的敏感性很高。分析了抗clcud抗性物种gossypium arboreum的v3-v4 16S rRNA基因扩增子,来自根际和腓骨层的微生物馏分以及易感棉花品种。已经确定了与疾病抗性相关的独特细菌分类群。进行了种间和种内微生物群移植,然后进行CLCUD发病率分析。可以看出,从G. arboreum fdh228中移植的根际微生物群体显着抑制了G. hirsutum品种中的Clcud,表现优于外源水杨酸的施用。虽然浮游移植也降低了疾病的发生,但它们的效率不如根际移植。差异表达分析DESEQ2用于识别与Clcud抑制相关的关键细菌属,包括pseudoxanthomonas和stenotrophomonas在G. arboreum fdh228的根际中。功能途径分析揭示了耐受物种中应力反应和代谢的上调。转录组学揭示了与蛋白质磷酸化和种间根际微生物群移植中有关的基因上调。这项研究强调了微生物群移植是一种可持续的方法,用于控制CLCUD以及有助于Clcud耐药性的特定微生物和遗传机制。
摘要:从阿尔及利亚健康鹰嘴豆的根际分离出的两种甲状腺素菌菌株和三个芽孢杆菌菌株的体外磷酸盐溶解能力以及对池塘实验中鹰嘴豆幼虫的生长影响进行了评估。所测试的微生物具有较高的磷酸盐溶解活性,溶解度指数范围为2.41至7.40。溶解化磷酸盐的浓度从30.17到157.44μg/ml不等。在龙舌兰杆菌BT1(157.44μg/ml)和Trichoderma Orientale T1(143.33μg/ml)的两种培养滤液中观察到了最大磷酸盐 - 溶解活性,并伴随着4.51至5.75的pH降低。分别使用菌株(B.龙舌兰B. tequilensis bt1和T. t. t.),结合使用,通过促进种子的发展并有效增强植物生长,对发芽产生有益的作用。鹰嘴豆幼苗与单独的治疗相比,用B.龙舌兰芽孢杆菌BT1和T. Orientale T1的混合物一起处理,表现出更好的营养生长。据我们所知,这是组合微型iSms b的磷酸盐溶解潜力的第一份报告。Tequilensis和T. Orientale及其促进鹰嘴豆植物生长的能力。
奇异果藤蔓衰落综合征(KVD)的特征是严重的根系障碍,导致冠层不可逆地枯萎。植物通常会因第一个地上症状的出现而迅速崩溃,即使在接下来的季节也没有恢复。自2012年首次爆发以来,综合征在意大利的不同领域(意大利的不同地区)一直对奇异果产量产生负面影响。迄今为止,尚未找到一个独特的,常见的因果因素,综合征称为多因素。在本文中,我们研究了与在三种不同的地下矩阵/隔室(土壤,根际和根)中开发KVD相关的整个生物群落(真菌,细菌和Oomycetes)。采样。要解决综合征的多因素性质,并研究了非生物因素在塑造这些群落中的潜在作用,还对土壤进行了物理化学分析。这项研究调查了组成微生物组以及生物和非生物因素之间的分类群体之间的关联。营养不良被认为是塑造KVD微生物群落的驾驶事件。从这项研究中获得的结果突出了卵属植物属的作用,这主要导致了卵菌的组成,尽管它也存在于健康的基质中。与KVD相关的根际群落是由不植物过程驱动的。细菌和真菌群落都导致属的丰富度高,并且与采样位点和基质高度相关,并强调了多个位置在地理上和空间上采样的重要性。此外,对患病的根际对关联网络的分析表明,存在潜在的跨王朝竞争,这是腐生,卵形和细菌之间植物来源碳的潜在竞争。
豆科植物富含蛋白质,是人类和动物的良好食物,具有很高的营养价值。植物生长促进菌(PGPR)是栖息在植物根际土壤中的微生物,有助于保持作物的健康状况、促进其生长并防止疾病的入侵。豆科植物根部产生的根系分泌物可以诱使微生物迁移到根际区域以进行其潜在活动,从而揭示了豆科植物与PGPR(根瘤菌)的共生关系。为了更好地了解豆科植物根际的PGPR,将使用各种基因组序列进行基因组分析,以观察土壤中的微生物群落及其功能。本综述讨论了植物促生根际细菌 (PGPR) 的比较基因组机制,揭示了植物生长促进、磷酸盐溶解、激素产生以及植物发育所需的植物促生基因等活动。本综述揭示了基因组学在改进基因分型数据收集方面的进展。此外,本综述还揭示了植物育种和其他涉及转录组学的分析在生物经济促进中的重要性。这项技术创新提高了作物在不利环境条件下的产量和营养需求。
在农业中使用和管理生物量化剂的总结,主要问题之一是对农业生态系统和农作物的根际中存在的物种的无知,因为它们可能有效使用。 div>从生态学的角度来看,重要的是要认识细菌群落的成员,这些成员有利于其作为接种剂的应用,并促进对农作物的积极生物学作用。 div>这项研究的开发是为了评估Azospirillum SP在番茄种植中的生长,发展和表现方面的农业生物学有效性。 div>为此,从农作物反应中评估了作物的根际,从农作物的反应中评估了主要的微生物类型。 div>结果表明,在所研究的条件下,假单胞菌,偶氮螺旋杆,pegotobacter,bacillus和链霉菌类型是番茄根际的微生物群落的一部分,并且氮杂螺母是主要类型。 div>对这种酮的人工接种对幼苗的生长以及植物的营养状况产生了积极影响,而农业性能在证人植物方面超过11%。 div>在接种植物的根际中获得了高度的水平。 div>
生物防治、生物刺激素和微生物组 第八届生物防治、生物刺激素和微生物组伙伴关系大会将在同一个地点举行,会议第一天将研究案例研究,重点关注识别和开发农业生物农药和生物刺激素的新研究。在互动小组讨论中,将讨论开发生物产品的新平台以及生物防治和生物刺激素政策和法规的最新进展。本次大会的第二天将重点关注植物微生物组,通过植物和土壤微生物组以及细菌-真菌相互作用的案例研究,回顾微生物与植物之间的共生关系。学术界和行业领袖将介绍根际、叶际和内际的新发现,以及植物和土壤微生物组研究在提高抗逆性、养分获取、作物产量以及对非生物和生物胁迫的耐受性方面的应用。
微塑料(MPS)在海洋生态系统中的有害影响是众所周知的(Cauwenberghe等,2014; Shivika等,2017),以及它们对陆现态生态系统所带来的威胁是引起关注的问题(Liu et al。这些担忧得到了估计,估计MPS在近地生态系统中的积累远大于海洋(Luca等,2016; Horton等,2017; Alimi等,2018)。在农业宇宙系统中,堆肥,污泥,灌溉和农业塑料是MP输入到农田的主要途径(Nizzetto等,2016; Steinmetz et al。,2016; Weithmann等,2018; Okoffo等,2018; Okoffo等,2021)。例如,塑料膜被广泛用于农作物的土壤表面以提高生产力,研究发现与没有塑料的土壤相比,塑料覆盖物的塑料碎片的研究增加了2倍(Zhou等,2020)。塑料薄膜覆盖练习不常用于稻稻土中。然而,在水压力区域的稻田中,塑料膜被用来减少水蒸发和维持谷物产量(Qu et al。,2012; Liu等,2013; Yao等,2014)。lv等。(2019)表明,在稻米养殖的共培养系统中,在非蛋白酶和水稻种植期间有12.1±2.5和27.6±5.9个小型kg -1小塑料。聚乙烯(PE)和聚氯乙烯(PVC)是农田生态系统中使用的最丰富类型的MPS(Li等,2011; Zhao等,2017; Yang等,2015)。另外,Xie等。Fei等。Fei等。聚乙烯(PE)膜和纤维,聚丙烯(PP)纤维和氯化物(PVC)颗粒,这些颗粒源自塑料产品的应用,例如有机肥料和商业鱼类饮食,是MP污染中MP污染的主要来源,用于稻米培养环境(LV等)。在过去的几年中,MP对土壤物理特性,微生物群落和植物营养比的影响的迹象已经在农田生态系统中占据了(Liu等,2017; Huang等,2019; Shin等,2021)。但是,很少有研究将MPS的影响与土壤养分和土壤酶特性联系起来。微观(Feng等,2020; Termer等,2017)倾向于附着在微塑料表面上,从而提供了新的利基市场(Zettler等,2013)。例如,在MPS污染的土壤中发现了几种具有降解PE的真菌物种(Sangale等,2019)。(2021)报告说,在三个月的土壤孵育后,PE和PVC显示出生物降解的迹象。(2020)报告说,酸性土壤中存在的MPS(PE和PVC)刺激磷酸酶