1. AAV1-hOTOF基因治疗常染色体隐性耳聋儿童 9 舒依来 1 , 吕军 1 , 王辉 1 , 程晓婷 1 , 陈雨欣 1 , 王大奇 1 , 张龙龙 1 , 曹奇 1 , 唐洪海 1 , 胡少伟 1 , 高凯宇 2 , 孟兆勋 1 , 王景涵1 、王紫晶 1 、朱碧云 1 、崔冲 1 、陈冰 1 、王武清 1 、柴人杰 3 、陈正毅 4 、李华为 1 1 耳鼻喉科研究所、眼耳鼻喉医院耳鼻喉科、国家卫健委听力医学重点实验室、医学神经生物学国家重点实验室、教育部脑科学研究前沿中心复旦大学生物医学科学系,上海,中国,2 上海瑞新基因治疗有限公司,上海,中国,3 数字医学工程国家重点实验室,耳鼻咽喉头颈外科,中大医院,生命科学与技术学院,生命与健康高级研究院,江苏省生物高科技重点实验室,南京,中国,4 耳鼻咽喉头颈外科,言语和听力生物科学和技术研究生项目和神经科学项目,哈佛医学院,伊顿皮博迪实验室,马萨诸塞州眼耳科,马萨诸塞州波士顿背景:常染色体隐性耳聋 9(DFNB9),由 OTOF 基因突变引起,特征为先天性或语前、重度至完全性双侧听力损失。然而,没有针对遗传性耳聋的药物治疗方法。AAV1-hOTOF,携带人类 OTOF 转基因的腺相关病毒(AAV)血清型 1,旨在治疗 DFNB9 患者。在这里,我们报告了通过单侧或双耳注射 AAV1-hOTOF 基因疗法治疗 DFNB9 儿童的安全性和有效性。方法:在这项单臂试验中,重度至完全听力损失的患者(1-18 岁)符合条件。AAV1-hOTOF 通过圆窗注入一个或两个耳蜗。主要结果是剂量限制性毒性 (DLT)。评估了不良事件 (AE)、免疫反应、听觉功能和言语感知。结果:从 2022 年 10 月到 2023 年 9 月,共招募了 11 名平均听觉脑干反应 (ABR) 阈值大于 95 dB 的患者(0.5-4 kHz)。六名患者接受单侧注射,其中患者 #1 接受 9×10 11 vg 剂量,患者 #2-6 接受 1.5×10 12 vg 剂量。随后,患者 #7-11 接受双耳注射,剂量为每耳 1.5×10 12 vg。随访时间为 4 至 26 周。未观察到 DLT。观察到 80 起不良事件,其中 97.5% (78/80) 为 1 级或 2 级,2.5% (2/80) 为 3 级。10 名儿童听力恢复。患者 #1 的平均 ABR 阈值在 4 周时恢复至 68 dB,13 周时恢复至 53 dB,26 周时恢复至 45 dB。
技术委员会博士JN Reddy,博士J.Nayfeh,博士E.Carrera,博士AM汉娜博士CS Matli,博士SNL Taib 博士F.Djavanroodi,博士陈伟,浙江人,博士M Asad,博士V. Zozulya,博士E.Jassim,博士MA Khan,博士M. Touahmia,博士MK 拉赫曼博士M. Aytekin,博士X. 任博士JLM Laureano,博士M.Khan,博士A.Akinola,博士B. Zazoum,博士OP Layeni,博士A.Asiz,博士徐晓燕,博士L. xiangyu,博士A.Pagani 博士阿鲁达先生,博士T.Ayadat,博士X. 方博士M.Marianna,博士F.Shaik,博士M. El Hassan,博士Y. Alshammari,博士M. Brahimi 博士SS 阿赫塔尔博士AA 阿布巴卡尔博士M. Bouassida,博士A Khabaz,博士M. El Tayeb,博士O.Sily,博士Z. Guan,博士H. Mahmoud,博士UJ Alengaram,博士问:徐东博士G. Khokhar,博士T. Merabtene,博士M. Khemissa,博士G. Mahmood,博士S. Lingala 博士Md S. Alam 博士A.Hanif,博士W. Al-Kutti,博士D.Balakrishnan,博士T. Mori,博士M.Ajmal,博士M. Khasawneh,博士S.Chowdhury,博士L.Jradi,博士HM Ali,博士KK萨克塞纳,
2/26/24,3:29 PM BMI和疾病风险的种族差异|肥胖预防来源|哈佛T.H. 陈公共卫生学院2/26/24,3:29 PM BMI和疾病风险的种族差异|肥胖预防来源|哈佛T.H.陈公共卫生学院
马倩 1,3,4,† , 高伟 2,5,† , 肖强 1,3,4 , 丁凌松 2,5 , 高天一 2,5 , 周亚军 2,5 , 高欣欣 1,3,4 , 陶岩 1,3,4 , 刘车 1,3,4 , 谷泽 1,3,4 , 孔翔红 6 , Qammer H. Abbasi 7 、李连林 4,8 、邱成伟 6* 、李元庆 2,5* 、崔铁军 1,3,4* 1 东南大学电磁空间研究所,南京 210096 2 华南理工大学自动化科学与工程学院,广州 510641 3 东南大学毫米波国家重点实验室,南京 210096中国第四智能超材料中心琶洲实验室,广州 510330,中国 5 琶洲实验室脑机接口研究中心,广州 510330,中国 6 新加坡国立大学电气与计算机工程系,新加坡 7 格拉斯哥大学詹姆斯瓦特工程学院,格拉斯哥,G12 8QQ,英国 8 北京大学电子学系,先进光通信系统与网络国家重点实验室,100871 北京,中国 † 马倩和高伟:这些作者对这项工作做出了同等贡献。*共同通讯作者:tjcui@seu.edu.cn;auyqli@scut.edu.cn;chengwei.qiu@nus.edu.sg。
微米级氧化镓薄膜中的定向载流子传输用于高性能深紫外光电探测 张文瑞 1,2 * 王伟 1 张金福 1 张谭 1 陈莉 1 王刘 1 张宇 3 曹彦伟 1 季莉 3 叶吉春 1,2 * 1 中国科学院宁波材料技术与工程研究所,浙江省能源光电子材料与器件工程研究中心,浙江 宁波 315201 2 甬江实验室,浙江 宁波 315201 3 复旦大学微电子学院专用集成电路与系统国家重点实验室,上海 200433 关键词:紫外光电探测器,宽禁带半导体,氧化镓,载流子传输,缺陷
香港,2024 年 4 月 13 日——2024 年数字经济峰会今天圆满落幕。为期两天的峰会吸引了超过 4,000 名现场和虚拟参与者,汇聚了来自约 40 个国家和地区的顶尖创新者、行业先驱和商界领袖。峰会以智慧城市发展为重点,涵盖了广泛的开创性主题,为参与者提供了关于智慧城市计划如何提高城市生活质量并创造更健康、更可持续的环境的见解。峰会第二天以“智慧金融论坛”拉开帷幕,行业领袖、金融专家和政策制定者就数字支付、人工智能 (AI)、绿色金融和央行数字货币 (CBDC) 等主题进行了深入讨论,就政策、监管框架和绿色投资机会交换了宝贵见解。香港财政司司长黄伟纶和香港数码港主席陈志明主持了开幕式。财政司司长黄伟纶表示:“智能金融是数字创新与金融业融合的产物,有望释放变革潜力。政府在金融科技、国际绿色金融中心以及绿色金融科技生态系统三个关键领域采取的各项举措,表明政府致力于拥抱创新、推动可持续金融和发展数字经济。”香港数码港主席陈少文表示:“科技赋能的数字金融是我们开启可持续未来的关键。利用绿色科技和绿色金融解决方案实现可持续金融,对于增强金融市场韧性、在智慧城市中塑造更具包容性和可持续性的数字金融格局至关重要。可持续金融的加速发展也有助于支持香港及其他地区向净零碳目标过渡,巩固香港作为国际绿色科技和绿色金融中心的地位。数码港期待继续与业界、学术界和研究界合作,通过金融创新履行我们的绿色承诺。”今天的主题演讲及小组讨论精彩纷呈,包括泰国银行支付及金融科技政策部副总监Pariwat Kanithasen讲述数字支付如何加强人际关系;蚂蚁集团数字技术国际业务总经理Derrick Loi阐述如何创新金融科技包容性,弥合数字鸿沟,推动数字经济;中国银行(香港)有限公司企业银行首席数字官张志强分享了银行业数字化及人工智能转型的商业价值。
课程代码 IMEL7001 课程名称 集成电路研究方法与应用 授课老师 余伟汉教授 上课日期 星期二 时间 19:00 - 22:00 地点 E4-G053
本文的主要目的是介绍和批判性地评估 CRISPR-Cas9 基因组编辑技术在复活灭绝物种方面的可能性。猛犸象,科学名称为 Mammuthus primigenius,是一种已灭绝的更新世巨型动物物种,以其在干旱草原苔原极寒恶劣条件下生存的出色适应能力而闻名,那里的平均气温在 -30°C 至 -50°C 之间。猛犸象强大的抗寒能力及其与苔原和北方森林的生态联系促使科学家们假设复活猛犸象可能对保护和恢复现代世界退化生态系统的平衡和健康做出重大贡献。科学家还认为,复活猛犸象可以增强现存物种的遗传多样性,从而进一步增强动物物种对不断变化的环境条件的恢复力和适应性。通过将 CRISPR-Cas9 基因组编辑技术应用于现代大象,科学家们预见到了从现代大象中成功复活猛犸象的可能性,将曾经被视为“不可能的任务”变成了可行的现实。本文将全面分析 CRISPR-Cas9 基因组编辑技术的机制和局限性,强调如何操作和利用这项独特的技术,使科学家能够以所需的方式操纵和修改生物体的基因组,从而让灭绝的物种复活。关于复活灭绝物种的好处是否大于伦理问题和潜在危害的争论仍未解决,本文还将讨论围绕这一努力的伦理影响。
ED1-2 ( 口头 ) 14:45 - 15:00 通过掺杂分布工程提高 p-GaN 栅极 HEMT 的稳健性 Matteo Borga 1 , Niels Posthuma 1 , Anurag Vohra 1 , Benoit Bakeroot 2 , Stefaan Decoutere 1 1 比利时 imec,2 比利时 imec、CMST 和根特大学 ED1-3 ( 口头 ) 15:00 - 15:15 在低 Mg 浓度 p-GaN 上使用退火 Mg 欧姆接触层的横向 p 型 GaN 肖特基势垒二极管 Shun Lu 1 , Manato Deki 2 , Takeru Kumabe 1 , Jia Wang 3,4 , Kazuki Ohnishi 3 , Hirotaka Watanabe 3 , Shugo Nitta 3 , Yoshio Honda 3 , Hiroshi Amano 2,3,4 1 日本名古屋大学工程研究生院、2 日本名古屋大学深科技系列创新中心、3 日本名古屋大学可持续发展材料与系统研究所、4 日本名古屋大学高级研究所 ED1-4(口头) 15:15 - 15:30 高 VTH E 模式 GaN HEMT 具有强大的栅极偏置相关 VTH 稳定性掺镁 p-GaN 工程 吴柯乐 2 , 杨元霞 2 , 李恒毅 2 , 朱刚廷 2 , 周峰 1 , 徐宗伟 1 , 任方芳 1 , 周东 1 , 陈俊敦 1 , 张荣 1 , 窦友正 1 , 海陆 1 1 南京大学, 中国, 2 科能半导体有限公司, 中国 ED1-5 (口头报告) ) 15:30 - 15:45 EID AlGaN/GaN MOS-HEMT 中 Al 2 O 3 栅氧化膜下的电子态分析 Takuma Nanjo 1 , Akira Kiyoi 1 , Takashi Imazawa 1 , Masayuki Furuhashi 1 , Kazuyasu Nishikawa 1 , Takashi Egawa 2 1 Mitsubishi electric Corporation, Japan, 2 Nagoya Inst.日本科技大学
