代表论文: 1. Yongqing Cai、Gang Zhang、Yong-Wei Zhang,单层 MoS 2 纳米带中极性反转的稳健载流子迁移率。J. Am. Chem. Soc. 136, 6269−6275 (2014)(ISI 统计的化学类高被引论文) 2. Yongqing Cai、Qingqing Ke、Gang Zhang、Boris I. Yakobson 和 Yong-Wei Zhang,磷烯中的高度流动原子空位。J. Am. Chem. Soc. 138, 10199-10206 (2016) 3. Yongqing Cai、Qingqing Ke、Gang Zhang、Yuan Ping Feng、Vivek B. Shenoy 和 Yong-Wei Zhang,磷烯的巨大声子各向异性和不寻常的非谐性:层间耦合和应变工程。Adv. Funct. Mater. 25, 2230-2236 (2015) (被选为期刊封面) 4. 袁家仁, 陈元平, 谢月娥, 张晓宇, 饶德伟, 郭彦东, 严晓红*, 冯元平*, 蔡永清*, 过渡金属二硫属化物中具有可调谐 Kubo 能隙和电荷注入的挤压金属液滴。过程。国家。阿卡德。科学。 USA 117, 6362-6369 (2020) 5. Devesh R. Kripalani、Yongqing Cai*、Jun Lou 和 Kun Zhou*,强边缘应力
摘要 随着物联网、大数据、人工智能等信息技术的发展,数字孪生与并行系统已成为制造业和复杂系统管控领域的研究热点,旨在推动新一代信息技术与制造业的深度融合,实现制造业物理世界与信息世界的互动融合。本文对数字孪生与并行系统的基本概念、技术内涵和应用进行了研究和总结,比较了它们之间的异同,分析了它们的发展趋势。旨在为复杂系统管控领域的研究人员提供参考。关键词 数字孪生,并行系统,复杂系统管控,人工智能,虚实交互 引用文献 杨林瑶,陈思远,王晓,张俊,王成宏。数字孪生与并行系统:现状、比较与展望。自动化学报,2019,45 (11): 2001 − 2031
致谢《人工智能 (AI) 战略资源指南》是一份联合国出版物,列出了国家、地区和国际层面上现有的人工智能伦理、政策和战略资源。该指南的工作由刘伟 (经社部) 领导,Richard A. Roehl (经社部) 参与,Shantanu Mukherjee (经社部) 负责监督。该指南代表了合作的努力,反映了技术和创新领域专家的意见和贡献。总体评论和意见来自(按字母顺序排列)联合国教科文组织的 Joe Hironaka、Maksim Karliuk、Prateek Sibal、Rachel Pollack 和柯诗瑶;中国科学院的郭华东;Mario Cervantes、Karin Perset (经合组织);Monika Matusiak 和 Veerle Vandeweerd (欧盟委员会);Naoto Kanehira (世界银行);William Colglazier (美国科学促进会);傅晓兰(牛津大学);陈玉萍(联合国技术特使办公室)和徐正中(国家行政学院)。第二章主要收到来自教科文组织的贡献:Dafna Feinholz、Jo Hironaka、胡先宏、Misako Ito、Melissa Tay Ru Jein、Maksim Karliuk、Shiyao Ke、Rachel Pollack、Sasha Rubel、Prateek Sibal、Cedric Wachholz;Alica Daly(世界知识产权组织);Bob Bell Jr. 和 Pilar Fajarnes Garces(联合国贸易和发展会议);Ewa Staworzynska(国际劳工组织);Inese Podgaiska(北欧工程师协会);Jayant Narayan(世界经济论坛);Merve Hickok(人工智能和数字政策中心);Maria Jose Escobar Silva(智利政府);Majid Al Shehry(沙特数据和人工智能管理局); Miguel Luengo-Oroz(联合国全球脉动计划);Olga Cavalli(南方互联网治理学院);Stephan Pattison(Arm Ltd.)和 Vanja Skoric(欧洲非营利法中心 ECNL)。第 3 章主要由 Charles Michael Ovink(联合国裁军事务厅);世界工程组织联合会(WFEO)的龚克、William Kelly 和李攀以及国际电信联盟的 Preetam Maloor 撰写。第 4 章主要由 Christina Pombo Rivera(美洲开发银行);Elisabetta Zuanelli(电子内容研究与开发中心 (CReSEC));Friederike Schüür(联合国全球脉动计划);罗马大学)和中国科学院的 Yi Zeng 撰写。研究协助由 Adi Gorstein、Catherine Huilin Deng、Kaidi Guo 和 Naomi Hoffman 提供。本资源指南中表达的观点均为作者的观点,不代表联合国或其会员国的官方立场。欢迎对本指南提出书面评论和反馈,请发送至 Wei Liu ( liuw@un.org ) 和 Joe Hironaka ( j.hironaka@unesco.org )。
摘要 在飞机项目的早期阶段,工业架构师需要评估不同的工业场景并进行权衡,以根据不同的关键绩效指标优化未来的工业架构。以前项目中积累的专家知识为新项目提供了基础。以一致的方式捕获和重用专家知识是一项具有挑战性的任务。本文介绍了一个关于飞机装配过程形式化应用本体开发的案例研究。它旨在促进从现有程序中捕获专家知识并重用它以支持新的飞机装配系统设计。该应用本体继承了IOF-Core本体的结构和类作为基础,采用BFO作为顶级本体。历史装配过程规范和领域专家的反馈被用作本体的知识来源。提取装配过程的相关元素,包括所有操作、材料和制造资源,并将其作为个体集成到本体中。基于对这些个体的分析,可以在类似过程中重复使用的共同知识可以概括为本体的相互关联的类。使用工业试点介绍了应用本体的详细开发方法。开发的本体被集成为交易空间框架的核心功能块。它可以帮助跟踪利益相关者的需求并支持新装配过程的联合仿真。关键词 1 本体,IOF,BFO,飞机装配,知识管理,系统工程,基于本体的工程。
In collaboration with He, Rong-Qiang (贺荣强) a gifted expert Zheng, Ru (郑茹) , Wang, Jia-Ming (王佳明), Chen, Yin (陈寅) , Tian, Yi-Heng ( 田一衡) at Renmin University of China; Huang, Li ( 黄理) a gifted expert at Science and Technology on Surface Physics and Chemistry Laboratory
2009 年至 2018 年,小型卫星市场经历了 23% 的复合年增长率 (CAGR)。预计 2019 年至 2024 年间将实现更大的扩张。
王晓祖是复旦大学管理学院教授,同时兼任香港大学商学院名誉教授、BI挪威商学院名誉教授、复旦大学-BI MBA项目学术主任。曾任韩国首尔国立大学客座教授。2003年加入复旦大学前,王晓祖曾任香港城市大学助理教授。王晓祖在国际学术期刊上发表过大量经济学和金融学论文,并经常为国内外媒体撰写有关中国经济和金融市场的文章。王晓祖曾多次获得教学奖。
9. Xu, Z.; Li, H.*; Liu, Y.; Wang, K.; Wang, H.; Ge, M.; Xie, J.; Li, J.; Wen, Z.; Pan, H.; Qu, S.; Liu,
在涉及系统识别,自适应控制和机器学习的应用程序中,随着时间的推移会不断处理输入输出数据流,以产生参数/权重估计的效率,以使假定的模型的行为与数据源相匹配。例如,在控制的背景下,这通常意味着模型的动力学应渐近地接近植物的动力学。当模型与工厂不兼容或数据流中包含不良信息时,这可能不会发生。更微妙的失败模式是模型的动力学不持续取决于参数的一种。在这种情况下,参数估计的序列可能会收敛到一定极限,而模型动力学的相应近似序列在任何意义上都无法收敛。
引言。全息术是最有前途的想法之一,它提供了量子引力的非微扰公式[1]。这种方法在反德西特(AdS)空间全息术中非常成功,即 AdS = CFT 对应[2]。另一方面,要理解现在的宇宙是如何产生的,我们需要一个德西特(dS)空间而不是 AdS 空间中量子引力的完整公式。尽管在四维高自旋引力中已经有了具体的提议[9],并且在 dS = dS 对应[10 – 13]、全息纠缠熵[14 – 17]和 dS 静态贴片全息术[18,19]方面也取得了有趣的进展,但我们仍然缺乏对 dS 空间全息术的理解,即所谓的 dS = CFT 对应[3 – 5](另见参考文献[6 – 8])。尤其是,我们缺少了对偶共形场论 (CFT),它存在于爱因斯坦引力中德西特空间的过去-未来边界上。这封信旨在为三维 dS 提出这个基本问题的解决方案。三维德西特空间的特殊之处在于它由陈-西蒙斯规范理论 [20] 描述,并且假设 dS = CFT 的标准思想,它预计与二维 CFT 对偶。S 3 上的陈-西蒙斯引力描述是德西特空间的欧几里得对应物,由一对 SU(2) 陈-西蒙斯规范理论 [20] 描述。此外,众所周知,SU(2) 陈-西蒙斯理论是