[1] 张志华, 庄国忠, 郭可欣, 袁建华, Superlatt.微结构。 2016,100,440。[2] a)FK Boz,B. Nisanci,S. Aktas,SE Okan,Appl。冲浪。科学。 2016年,387,76; b) S. Yilmaz,M. Kyrak,国际。 J. Mod.物理。 B 2018 , 32 , 1850154. [3] RLM Melono, CF Lukong, O. Motapan, J. Phys. B:At.,Mol.选择。物理。 2018,51,205005。[4] G. Safarpour、MA Izadi、M. Nowzari、E. Nikname、MM Golshan、Commun。理论。物理。 2014 ,61,765。[5] Y. Yakar,B. Çakır,A. Özmen,Int. J. Mod.物理。 J 2007 , 18 , 61 [6] H. Kes, A. Bilekkaya, S. Aktas, S. Okan, Superlatt.微结构。 2017 ,111,966. [7] a)O. Akankan、I. Erdogan、H. Akbas ̧、Phys. E 2006,35,217; b) XC Li、CB Ye、J. Gao、B. Wang、Chin。物理。 B 2020 , 29 , 087302. [8] a)XC Li, CB Ye, J. Gao, B. Wang, Chin.物理。 B 2020,29,087302; b) JD Castano-Yepes、A. Amor-Quiroz、CF Ramirez-Gutierrez、EA Gomez、Phys。 E 2020,109,59。[9] a)H. El, AJ Ghazi, I. Zorkani, E. Feddi, A. El Mouchtachi, Phys. B2018,537,207; (b)E. Niculescu、C. Stan、M. Cristea 和 C. Trusca,Chem.物理2017 ,493 ,32。[10] a)B. Cakir、Y.Yakar、A.Ozmen,Chem.物理。莱特。 2017年,684,250; b) Y. Yakar、B. Çakir、A. Özmen,Chem.物理2018,513,213。
摘要。非线视线(NLOS)成像已成为一种突出的技术,用于从经历多种弥漫性反射的图像中重建遮盖的对象。这种成像方法由于其广泛的潜在应用而引起了各种领域的关注,包括遥感,救援操作和智能驾驶。然而,准确地对入射光方向进行建模,该方向携带能量并由检测器捕获,并在随机扩散反射方向中捕获,这构成了巨大的挑战。这一挑战阻碍了NLOS成像的精确前进和逆物理模型的获取,这对于实现高质量重建至关重要。在这项研究中,我们提出了一个使用随机角度跟踪的NLOS成像系统的点扩散函数(PSF)模型。此外,我们引入了一种重构方法,称为物理受限的反向网络(PCIN),该方法通过利用PSF约束和卷积神经网络的优化来建立准确的PSF模型和逆物理模型。PCIN方法在正向PSF模型的约束下随机初始化参数,从而消除了传统深入学习方法需要的广泛训练数据集的需求。通过交替的迭代和梯度下降算法,我们迭代优化了PSF模型和神经网络参数中的分散反射角。结果表明,PCIN不需要大量实际的地面数据组来实现有效的数据利用。此外,实验发现证实了所提出的方法可以高精度有效地恢复隐藏的对象特征。
1大学生命科学和公共卫生系,圣心天主教大学,罗马,意大利罗马,2妇女与儿童健康与公共卫生部,大学多克莱林基金会A. Gemelli A. Gemelli,IRCCS,Rome,Rome,意大利,3个复杂的运营运营,新生儿学的综合作业,大学多肽基金会。 IRCCS,意大利罗马,4研究个性化医学研究Biobanca,大学多诊所A. Gemelli,IRCCS,罗马,意大利,5个儿科神经病学部门,大学多克林基金会A. Gemelli,Irccs,Rome,Rome,Rome,Italy,意大利,6年大学聚会基金会A. Gemelli,Irccs,Rome,Rome,Rome,Rome,Rome,Rome,Rome,7 Pediaciatiacy,7 Pediaciatiaciatiaciactiaciactiacia,大学多克林基金会A. Gemelli,IRCCS,意大利罗马,8研究核心设施数据收集G-SP系,大学多克林基金会A. Gemelli,IRCCS,罗马,意大利,意大利9号,实验室科学和传染病系,大学多克林基金会A. Gemelli,Irccs,Rome,10诊断成像,肿瘤放射疗法和血液学,Fondazione多克林大学A. Gemelli,Irccs,罗马,意大利
摘要:半导体纳米晶体中的载体旋转是量子信息处理的有前途的候选者。使用时间分辨的法拉第旋转和光致发光光谱的组合,我们证明了胶体CSPBBR 3纳米晶体中的光学自旋极化和相干自旋进液,这些纳米晶体一直持续到室温。通过抑制具有少量施加的磁场的不均匀性高纤维的影响,我们证明了接近纳米晶光发光生命周期的不均匀孔横向旋转旋转时间(T 2 *),从而几乎所有发射的光子都来自colent colehent colent colent colent spins spins spins spins。热激活的LO声子在升高温度下驱动额外的自旋去向,但在室温下仍观察到连贯的自旋进动。这些数据揭示了纳米晶和散装CSPBBR 3中的自旋之间的几个主要区别,并为在基于自旋的量子技术中使用金属 - 甲基钙钛矿纳米晶体打开了门。关键字:钙钛矿纳米晶体,旋转dephasing,t 2 *,时间分辨的法拉第旋转,旋转式,量子信息
抽象的目标靶向肝硬化中细菌易位仅限于具有抗菌抗性风险的抗生素。这项研究探索了不可吸收,肠道限制的,工程化的碳珠吸附剂的治疗潜力,YAQ-001在肝硬化模型和急性 - 慢性肝衰竭(ACLF)模型中,以及在Cirrhosis的临床试验中的安全性和可耐受性。在体外评估了YAQ-001的设计性能。肝硬化和ACLF的两鼠模型(4周,带有或不含脂多糖的胆管连接),接受YAQ-001 2周;研究了6周接受YAQ-001的肝硬化(6周和12周碳四氯化碳(CCL4))的两种小鼠模型。器官和免疫功能,肠道通透性,转录组学,微生物组组成和代谢组学。在肠道器官上评估了粪便水对动物模型肠道通透性的影响。进行了28例肝硬化患者的多中心,双盲,随机,安慰剂控制的临床试验,用于3个月的4 gr/天YAQ-001。结果YAQ-001表现出内毒素的快速吸附动力学。体内,YAQ-001降低了肝损伤,纤维化的进展,门静脉高血压,肾功能障碍和ACLF动物的死亡率显着。对内毒素毒素严重性,多肌血症,肝细胞死亡,全身性炎症和器官转录组学的严重影响,观察到肝,肾脏,脑,大脑和结肠的炎症,细胞死亡和衰老的可变调节。YAQ-001在临床试验中被调节为设备的安全性和耐受性的主要终点。YAQ-001降低了器官中的肠道渗透性,并对微生物组组成和代谢产生了积极影响。结论本研究为肝硬化患者提供了强烈的临床前原理和安全性,以允许临床翻译试验登记编号NCT03202498
•不受限制的对抗攻击旨在使用生成模型生成自然的对抗示例。•先前的攻击直接将类似PGD的梯度注入生成模型的采样,从而损害发电质量。
IFN-γ的产生对于控制多种肠道感染至关重要,但是它对肠上皮细胞(IEC)的影响尚不清楚。隐孢子虫寄生虫仅感染上皮细胞,并且干扰素激活IEC中转录因子Stat1的能力是寄生虫清除所必需的。在这里,在感染过程中使用单细胞RNA测序在感染过程中促进IEC,发现在感染过程中,脑海中肠细胞的比例增加,并诱导IFN-γ依赖性基因信号,而未感染和感染细胞之间是可比的。这些分析是通过体内研究补充的,这表明寄生虫对照需要IEC的IEC表达。出乎意料的是,用IFN-γ的IFNG - / - 小鼠的治疗表明对这种细胞因子的IEC反应与寄生虫负担的延迟减少相关,但不会影响寄生虫的发展。这些数据集提供了对IFN-γ对IEC的影响的洞察力,并提出了一个模型,其中IFN-γ信号传导对未感染的肠上皮细胞对于控制隐孢子虫很重要。
土壤微生物可以在土壤外酶的帮助下在垃圾分解过程中获得能量和养分。垃圾类型是影响土壤外酶活性的最关键因素。然而,垃圾类型如何通过草地等级调节土壤外酶活性。在这里,我们在不同降解的草原上进行了两种不同类型的垃圾分解的240天实验,并进行了土壤外酶的活性和化学计量。我们发现,在氯藻中,C/N的酶活性和C/N的C/N酶计量比在轻度降级的水平和C-Acquiring酶活性的C. virgata中高于L. C. virgata的酶高于L. Chinenensis中的16.96%。p-apquiring酶活性具有相同的趋势,垃圾类型适中和高度降解的水平,在维氏梭菌中的含量分别为20.71%和30.89%。仅在轻度降解水平的C/N的酶化学计量中显示了酶化学计量法的变化,这表明垃圾类型仅影响轻度降解的草地中的微生物C限制。几乎所有土壤外细胞外酶活性和细胞外酶化学计量法(除N/P的酶化学计量法外,随着草原降解水平的增加而降低。所有矢量角度均小于45°,表明土壤微生物在分解过程中受到n而不是p的限制。酶矢量分析表明,在垃圾分解过程中,C和N共同限制了土壤微生物群落。此外,根据随机森林(解释超过80%),我们发现土壤总氮,总碳,总磷,溶解的有机C,pH和EC是影响土壤酶活性的重要因素,这是通过降解水平来影响土壤酶活性的。我们的结果强调,降解水平可以调节垃圾类型对土壤的影响
基于石墨炔 (GY) 和石墨炔 (GDY) 的单层代表了下一代二维富碳材料,其可调结构和性能超越石墨烯。然而,检测原子级厚度的 GY/GDY 类似物中的能带形成一直具有挑战性,因为该系统必须同时满足长程有序和原子精度。本研究报告了在表面合成的金属化 Ag-GDY 薄片中形成具有介观(≈ 1 μ m)规律性的能带的直接证据。采用扫描隧道和角度分辨光电子光谱,分别观察到费米能级以上实空间电子态的能量相关跃迁和价带的形成。此外,密度泛函理论 (DFT) 计算证实了这些观察结果,并揭示了蜂窝晶格上双重简并的前沿分子轨道产生接近费米能级的平坦、狄拉克和 Kagome 能带。 DFT 建模还表明原始薄片材料具有固有带隙,该带隙保留在具有 h-BN 的双层中,而吸附诱导的带隙内电子态在 Ag-GDY 装饰银的 (111) 面的合成平台上演变。这些结果说明了通过原子精确的二维碳材料中的分子轨道和晶格对称性设计新型能带结构的巨大潜力。
摘要:CSPBBR 3量子点(QD)是光电设备的有希望的候选者。用二烷基铵(例如二二二烷基二甲基溴化物溴化物(DDAB))取代油酸(OA)和油胺(OLA)盖剂,表明外部量子效率(EQE)的含量增加了0.19%(OA/OLA)至13.4%(dd.4%)。设备的性能显着取决于QD固体中光激发载体的分解长度和迁移率。因此,我们通过构造双尺寸的QD混合物来研究DDAB限制的CSPBBR 3 QD固体中的电荷载体传输动力学。可以通过定量改变两个尺寸的QD之间的比率来监测荷兰载波的差异,从而改变了每个QD群集中载体的平均自由路径。从超快瞬态吸收光谱获得的QD固体的激发态动力学表明,由于强量量子的构造,光生的电子和孔很难在小型QD(4 nm)中使用。另一方面,大型QD(10 nm)中的光诱导的电子和孔都将与小型QD插入界面,然后进行重组过程。将载载物的不同研究与混合物中的QD组件上的蒙特卡洛模拟相结合,我们可以在10 nm cspbbr 3 qds中计算出电荷载体的差值长度为〜239±16 nm,以及电子和电子的迁移率,以及2.1(2.1(2.1(0.6))和0.6(0.6)(0.69(±0.6)(0.69)(0.69)(±0.69)(±0.69(±0.6)(±0.69)(±0.69)(±0.69)(±0.69)(±0.69)(±0.69)(±0.69)(±±0.6)(±±0.6)(±±±9)(±±0.6) 分别。这两个参数均表示DDAB限制的QDFIFM中有效的电荷载体传输,这合理化了其LED设备应用程序的完美性能。关键字:超快光谱,扩散长度,cspbbr 3,ddab,量子点光伏,载体传输,电荷转移■简介