摘要:准确评估岩石强度是几乎所有岩石项目(如隧道和开挖)的一项基本任务。人们尝试了许多方法来创建计算无限制抗压强度 (UCS) 的间接技术。这通常是由于收集和完成上述实验室测试的复杂性。本研究应用了两种先进的机器学习技术,包括极端梯度提升树和随机森林,用于根据无损检测和岩相学研究预测 UCS。在应用这些模型之前,使用 Pearson 卡方检验进行了特征选择。该技术选择了以下输入来开发梯度提升树 (XGBT) 和随机森林 (RF) 模型:干密度和超声波速度作为无损检测,云母、石英和斜长石作为岩相学结果。除了 XGBT 和 RF 模型外,还开发了一些经验方程和两个单决策树 (DT) 来预测 UCS 值。本研究的结果表明,在系统精度和误差方面,XGBT 模型在 UCS 预测方面优于 RF。XGBT 的线性相关性为 0.994,其平均绝对误差为 0.113。此外,XGBT 模型优于单个 DT 和经验方程。XGBT 和 RF 模型也优于 KNN(R = 0.708)、ANN(R = 0.625)和 SVM(R = 0.816)模型。本研究的结果表明,XGBT 和 RF 可有效用于预测 UCS 值。
在葡萄糖缺乏的情况下,由于线粒体功能障碍和酮体利用所需酶的下调,癌细胞无法转而使用酮体来代替能量 [2]。癌细胞缺乏代谢灵活性,这为癌症治疗提供了治疗潜力。生酮饮食 (KD) 是一种高脂肪/低碳水化合物/适量蛋白质的饮食,最初用于治疗癫痫 [3, 4],最近被建议作为癌症治疗的辅助疗法 [5, 6]。KD 旨在利用瓦博格效应,通过葡萄糖饥饿导致癌细胞死亡,而正常细胞则调整其新陈代谢以利用酮体作为能量的替代品,从而正常细胞存活。此外,降低血糖也与胰岛素和胰岛素样生长因子水平降低有关,而这两者在癌细胞增殖中起着重要作用 [7]。许多临床前研究已经为 KD 的抗癌作用提供了证据 [5, 6, 8-12]。 KD 在癌症治疗中的临床潜力最近才被探索。大多数临床数据来自病例报告 [13-17] 或主要关注 KD 安全性的试点研究 [18, 19]。迄今为止只有一项随机对照试验 [20]。这些临床试验的结果令人鼓舞,特别是对于脑肿瘤 [5, 13, 14]。重要的是,这些研究中没有与 KD 干预相关的严重不良反应或毒性。我们在此介绍两例确诊为颅内转移性肿瘤肺癌和肺转移性原发性肝癌患者的病例研究。两名患者均在常规治疗失败后开始接受 KD 治疗。我们的研究证实了 KD 在癌症治疗中的有益作用。
压缩态的压缩分布到一组独立的光学模式上,是连续变量量子信息技术领域的重要量子资源 [1],例如单向量子计算 [2] 和量子通信 [3]。此外,多模压缩光在计量应用方面是一种很有前途的工具,特别是用于具有量子增强灵敏度的多参数估计 [4,5]。例子包括通过空间多模压缩实现量子成像 [6,7],以及利用时间/光谱多模压缩光实现远距离时钟的量子改进同步 [8]。上述广泛的潜在应用与不断增强的产生、控制和检测多模量子光的能力密切相关,这得益于空间光调制器、光频率梳、多像素探测器等光学技术的发展。压缩光通常通过放置在光学腔内的二阶非线性晶体中的参量下转换 (PDC) 获得,即所谓的光学参量振荡器 (OPO)。光学腔增强了非线性相互作用,并将压缩光限制为单个空间模式。通过利用光的不同自由度(例如时间/光谱 [ 9 ]、空间 [ 10 ] 和轨道角动量 [ 11 ]),可以产生多模压缩。然而,OPO 谐振腔将压缩带宽限制在谐振腔带宽内。产生宽带多模压缩的一种有前途的替代方法是使用单通 PDC 源,用脉冲激光器泵浦,该激光器在频域中具有光频梳 [ 12 ]。采用脉冲泵浦的单通设计可确保在 PDC 输出的每个脉冲上都维持压缩 [ 13 , 14 ]。基于非线性波导的单通
摘要:由于复杂的自发脑活动纠缠在一起,描述脑电图 (EEG) 中大脑对输入的动态响应模式并非易事。在这种情况下,大脑的反应可以定义为 (1) 输入后产生的额外神经活动成分或 (2) 输入引起的持续自发活动的变化。此外,反应可以体现在多种特征中。三个常见的特征示例是 (1) 瞬态时间波形,(2) 时频表示,和 (3) 相位动态。最广泛使用的平均事件相关电位 (ERP) 方法捕捉到了第一个特征,而后两者和其他更复杂的特征正受到越来越多的关注。但是,目前还没有太多的研究对如何在神经认知研究中有效利用多方面特征提供系统的说明和指导。基于一个有 200 名参与者的视觉异常 ERP 数据集,这项工作展示了上述特征的信息如何相互补充,以及如何基于典型的基于神经网络的机器学习方法将它们整合在一起,以便在基础和应用认知研究中更好地利用神经动态信息。
在这一努力中,我们展示了 BHEX 任务时间参考的一种方案的性能:使用目前作为激光干涉仪空间天线 (LISA) 任务的一部分开发的太空级超低噪声激光器,以及光学频率梳,将该激光器的稳定性转移到微波范围以供仪器使用。我们描述了微波下变频的实现,其中 LISA 腔稳定激光器被锁定到光学频率梳,以将光频率降低到 100 MHz。使用参考独立实验室超稳定激光系统的相位噪声分析仪测量 100 MHz 信号的分数频率稳定性。我们展示了该实验的结果,表明该系统的性能符合 BHEX 要求。
⑤ 不受著作权限制 ⇩ 著作权侵权的构成要件 = 1) 著作权性 + 2) 依赖性 + 3) 相似性 + 4) 法定使用 - 5) 著作权限制
1胎儿神经影像学和发展科学中心,新生医学部,医学系波士顿儿童医院,哈佛医学院,马萨诸塞州波士顿,美国马萨诸塞州02115; navaneethakrishna.makaram@childrens.harvard.edu(N.M.); sarvagya.gupta@childrens.harvard.edu(S.G.); matthew.pesce@childrens.harvard.edu(M.P.); ellen.grant@childrens.harvard.edu(P.E.G.)2美国马萨诸塞州波士顿的波士顿儿童医院神经病学系,美国马萨诸塞州02115; jeffrey.bolton@childrens.harvard.edu(J.B。); phillip.pearl@childrens.harvard.edu(P.P.); Alexander.rotenberg@childrens.harvard.edu(A.R。)3美国马萨诸塞州波士顿的波士顿儿童医院神经外科癫痫手术系,美国马萨诸塞州02115; scellig.stone@childrens.harvard.edu 4计算机科学系,马萨诸塞州波士顿大学,马萨诸塞州波士顿,美国马萨诸塞州02115; haehn@cs.umb.edu(D.H.); marc@cs.umb.edu(M.P。) 5 Jane和John Justin Mind Health研究所,美国德克萨斯州沃思堡库克儿童医疗保健系统,美国德克萨斯州76104; Christos.papadelis@cookchildrens.org *通信:eleonora.tamilia@childrens.harvard.edu3美国马萨诸塞州波士顿的波士顿儿童医院神经外科癫痫手术系,美国马萨诸塞州02115; scellig.stone@childrens.harvard.edu 4计算机科学系,马萨诸塞州波士顿大学,马萨诸塞州波士顿,美国马萨诸塞州02115; haehn@cs.umb.edu(D.H.); marc@cs.umb.edu(M.P。)5 Jane和John Justin Mind Health研究所,美国德克萨斯州沃思堡库克儿童医疗保健系统,美国德克萨斯州76104; Christos.papadelis@cookchildrens.org *通信:eleonora.tamilia@childrens.harvard.edu
声子极化子能够实现红外光的波导和定位,具有极强的限制性和低损耗。通常使用互补技术(例如近场光学显微镜和远场反射光谱)来探测此类极化子的空间传播和光谱共振。这里,介绍了红外-可见和频光谱显微镜作为声子极化子光谱成像的工具。该技术同时提供亚波长空间分辨率和高分辨率光谱共振信息。这是通过使用可调红外激光共振激发极化子和对上转换光进行宽场显微镜检测来实现的。该技术用于对 SiC 微柱超表面中局部和传播表面声子极化子的杂交和强耦合进行成像。光谱显微镜允许通过角度相关共振成像同时测量动量空间中的极化子色散,并通过极化子干涉测量法在实空间中测量极化子色散。值得注意的是,可以直接成像强耦合如何影响极化子的空间定位,而这是传统光谱技术无法实现的。在强耦合阻止极化子传播到超表面的激发频率下观察到边缘态的形成。该技术适用于具有破坏反演对称性的广泛极化子材料,可用作快速、非微扰工具来成像极化子杂化和传播。
我们提出了新方法,用于精确合成具有高成功概率和门保真度的单量子比特幺正,同时考虑了时间箱和频率箱编码。所提出的方案可通过光谱线性光学量子计算 (S-LOQC) 平台进行实验,该平台由电光相位调制器和相位可编程滤波器(脉冲整形器)组成。我们评估了两种编码中任意门生成的两种最简单的 3 组分配置的保真度和概率性能,并使用单音射频 (RF) 驱动 EOM,为时间箱编码中任意单量子比特幺正的合成提供了精确的解析解。我们进一步研究了使用紧凑实验装置在多个量子比特上并行化任意单量子比特门,包括光谱和时间编码。我们系统地评估和讨论了 RF 带宽(决定驱动调制器的音调数量)以及不同目标门的编码选择的影响。此外,我们还量化了在实际系统中驱动 RF 音调时,可以并行合成的高保真 Hadamard 门的数量,且所需资源最少且不断增加。我们的分析将光谱 S-LOQC 定位为一个有前途的平台,可进行大规模并行单量子位操作,并可能应用于量子计量和量子断层扫描。
•牙科清洁(预防)的覆盖范围限制为每个日历年两次。•牙周维护的覆盖范围限制为每个日历年度四次。•密封剂每三年限制每颗牙齿一次。•专业应用的局部氟化物的覆盖范围限制为每个日历年,适用于19岁以下的成员。•Bitewing X射线的覆盖范围限制为每个日历年一次。•全嘴或全景X射线限制为每三年一次。•口服卫生指令限制为每寿命一次。•覆盖太空维护者的覆盖范围仅限于19岁以下的受抚养成员过早损失的原发性牙齿。•更换牙冠和固定或可移动的假体设备每五年限制一次。•牙科植入程序限制为每五年一次。•非手术和外科牙周病限制为两年。