陶氏公司 (NYSE: DOW) 结合全球范围、资产整合和规模、专注创新和领先业务地位,实现盈利性增长。公司的目标是成为最具创新性、以客户为中心、包容性和可持续性的材料科学公司,旨在通过我们的材料科学专业知识和与合作伙伴的合作,为世界创造可持续的未来。陶氏的塑料、工业中间体、涂料、聚氨酯和有机硅业务组合为包装、基础设施、移动和消费者护理等高增长细分市场的客户提供广泛的差异化科学产品和解决方案。陶氏在 31 个国家/地区经营 106 个制造基地,拥有约 35,700 名员工。陶氏在 2020 年实现了约 390 亿美元的销售额。对陶氏或公司的引用是指陶氏公司及其子公司。如需更多信息,请访问 www.dow.com 或在 Twitter 上关注 @DowNewsroom。
高表面特性。tc ba-y-cu-o和通过薄绝缘子过层钝化。Takashi Hirao,Kentaro Setsune和Kiyotaka W asa。中央重新建筑实验室,Matsushita Electric Industrial Co.,Ltd.,3-15,Yagumonakamachi,Moriguchi,Osaka,Osaka 570
前陶氏精确轰炸靶场,也称为陶氏空军基地轰炸和射击靶场、大池塘轰炸和射击靶场和皮克雷尔池塘区域,在 1942 年至 1949 年间被驻扎在前陶氏陆军机场的机组人员用于进行空对地射击、火箭和轰炸练习。通过历史研究和实地考察,已确定与前陶氏精确轰炸靶场相关的区域,即皮克雷尔池塘空对地靶场,存在潜在爆炸危险。已知或怀疑在该靶场使用的弹药包括带有点射弹的练习炸弹、练习火箭和小型武器弹药。
· 5 微米滤芯;· 高压泵;· 高性能陶氏膜;· 玻璃纤维压力容器;· 渗透液和浓缩液流量计;· 每个泵后的压力指示器;· HPP 前的低压开关;· 全自动控制柜;· CIP 连接;· PVC 管道;· 不锈钢针阀、高压节流阀、高压止回阀。
· 5 微米滤芯;· 高压泵;· 高性能陶氏膜;· 玻璃纤维压力容器;· 渗透液和浓缩液流量计;· 每个泵后的压力指示器;· HPP 前的低压开关;· 全自动控制柜;· CIP 连接;· PVC 管道;· 不锈钢针阀、高压节流阀、高压止回阀。
背景:非转移性肌肉浸润性尿路上皮膀胱癌(MIBC)的预后较差,护理标准(SOC)包括基于新辅助顺铂的化学疗法(NAC)与膀胱切除术相结合。接受NAC的患者与单独的膀胱切除术相比,总体生存率的最多<10%。这个主要的临床问题强调了我们对抵抗机制的理解和对可靠的临床前模型的需求。鸡肉胚胎绒毛膜膜膜(CAM)代表了免疫功能低下的小鼠的快速,可扩展且具有成本效益的替代方法,用于在体内建立患者衍生的异种移植物(PDX)。cam- PDX利用易于获得的植入支架和富含血管的,免疫抑制的环境,用于植入PDX肿瘤和随后的功能研究。方法:我们使用CAM-PDX模型优化了原发性MIBC肿瘤的植入条件,并在基于顺铂的化学疗法反应之间进行了一致性,对患者的化学疗法反应与使用免疫组织化学标志物相结合的PDX肿瘤对PDX肿瘤进行了匹配。我们还使用肿瘤生长测量方法和对增殖标记物的免疫检测,KI-67测试了CAM-PDX上抗化疗的膀胱癌的精选激酶抑制剂反应。结果:我们的结果表明,在CAM上生长的原发性,耐NAC的MIBC肿瘤具有组织学特征 - 以及基于顺铂的基于顺铂的化学疗法耐药性,可在诊所观察到匹配的父母人类肿瘤标本。结论:我们的数据表明,基于顺铂的化学疗法抗性表型与原发性患者肿瘤和CAM-PDX模型之间的一致性。患者肿瘤标本成功地植入了CAM上,并显示出对双重EGFR和HER2抑制剂治疗的肿瘤生长大小和增殖的降低,但对CDK4/6或FGFR抑制没有明显的反应。此外,蛋白质组知情的激酶抑制剂在MIBC CAM-PDX模型上使用了新型治疗剂的快速体内测试的整合,从而为更复杂的细胞前小鼠PDX实验提供了更为有效的临床试验设计,旨在为具有有限治疗选择的患者提供最佳的精确药物。
“关于排除有组织犯罪的特别条款” 11 其他 (1)务必在投标开始前提交“资格通知书(复印件)”。 (2)代理投标的投标人投标时须提交《投标委托书》。 (3)招标投标及承包具体事宜,请参阅《招标投标及承包指南》。 (4)通过邮寄方式发送的投标必须于 2024 年 7 月 15 日前到达下列地址。 邮寄前信封上必须清楚写明公司名称、投标日期和时间、主题以及用红墨水写的“附有投标书”。 此外,请提前告知我们您将通过邮件收到这本书。 、(5)电报。 不接受电话投标。 (6) 咨询窗口:〒292-8510 千叶县木更津市吾妻千崎陆上自卫队木更津警备队第 316 计事中队木更津支队承揽中队谷山电话 0438-23-3411(内线 351)传真 0438-23-3411(内线 357) ※发送传真时,可以从语音切换到传真,也可以先打电话,然后等待传真。
二维(2D)材料长期以来一直是材料科学的焦点,这是由于其高度可调的化学结构,均匀的孔径分布和内在的传输途径。在过去的二十年中,突破性的2D材料的出现,包括石墨烯,过渡金属二分法(TMDC),分层双氢氧化物(LDHS),金属氮化物/碳化物(MXENES),金属 - 有机框架(MOFS)和远处的有机框架(MXENES),以及赖以生成的框架(MOFS),以及赖因构架(COFS),并列出了赖因(COFS),并将其延伸 - 本期特刊旨在探索和最大化2D材料在气体捕获和分离中的潜力,以理论和基于模拟的进步进行桥接实验演示。通过促进一种系统的方法来采用2D材料来进行高效,低能的膜工艺,我们希望为其工业实施和未来创新建立全面的基础。
在此,首次评估了高分子量氟化芳族聚酰亚胺,以恢复与其他氢氟甲苯和氢氟氟此类的混合物中的差异(R-32)(R-32)(R-134A:R-134A:1,1,1,1,1,1,2- Tetrafluoroorothane,r-125:r-125:pentane and pentane and-pentane and-1-pentane,and-1-pentane,and-1-1-134:pentane and rororo; 2,3,3,3-tetrafluorpene)。First, a screening was performed with thick flat membranes made of the 4,4 ' -(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and three different amines: 2,2 ′ -bis(4-aminophenyl)hexafluoropropane (6FpDA), 2,4,6-trimethyl-m-phenylenedi amine (TMPD)和2,3,5,6-四甲基-1,3-苯二胺(Durene)。因此,由于其每种形式出色的R-32分离,因此选择了6FDA-TMPD来制造无缺陷的空心纤维薄膜复合膜(HF-TFCM)。这些HF-TFCM表现出出色的分离性能,可从商业二进制混合物R-410A和R-454B(R-32和R-1234YF的混合物)中获得高纯度R-32(渗透浓度> 99 Vol%)。此外,我们首次报告了从三元混合R-407C(R-32/R-134A/R-125 38.2:43.8:18 Vol%)的R-32膜回收率。最终,对CO 2 /CH 4(50:50 vol%)和CO 2 /N 2(15:85 vol%)的合成气体混合物的分离进行了基准测试,这表明制备的HF-TFCM保持了6FDA-TMPD厚的厚膜的分离性能。