铝基质复合材料(AMC)对其出色的机械性能引起了极大的关注,尤其是在苛刻的航空航天和汽车行业中。本研究的重点是用碳化钾(B4C)和切碎的E玻璃纤维增强的铝7075的机械表征。主要目的是增强材料的强度和韧性,同时减轻其固有的脆性。增强过程涉及使用搅拌铸造方法将陶瓷颗粒和切碎的玻璃纤维整合到铝7075基质中。此方法确保了均匀的增强剂分散,从而导致复合结构。实验设置包括改变B4C和E玻璃纤维的重量百分比,以评估其对复合材料机械性能的影响。在ASTM标准标准下,评估了复合材料的密度,孔隙率,硬度和拉伸强度。结果表明,添加碳化氢硼和e-玻璃纤维可显着改善复合材料的硬度和拉伸强度,同时降低孔隙率。对磨损表面的扫描电子显微镜(SEM)分析提供了对磨损机制的见解以及增强作用在增强摩擦学性能方面的有效性。
目标:近年来,越来越多的CAD/CAM(计算机辅助设计/计算机辅助制造)混合材料引入了牙科市场。此外,用于添加剂制造(AM)的CAD/CAM混合材料在数字牙科中变得越来越有吸引力。使用微型层析成像(µCT)与扫描电子显微镜(SEM)相结合的材料微结构的研究仅到目前为止仅在有限的程度上可用。方法:一种CAD/CAM三维(3D-)可打印的混合材料(Varseosmile Crown Plus)和两种CAD/CAM可铣削的混合材料(Vita Enamic; Voco Grandio)以及一种直接的复合材料(Ceram.x Duo)。圆柱样品,并通过同步辐射µ -CT在0.65 µm的体素尺寸下进行研究。通过SEM研究了通过切割和抛光获得的相同材料的不同样品。结果:3D打印的混合材料显示出一些团聚和更不规则的填充物,以及由于印刷过程而导致的可见分层宏结构和一些球形毛孔。CAD/CAM可铣削的杂交材料显示陶瓷颗粒的均匀分布。直接复合材料根据手动处理显示了多种气泡和微结构不规则性。显着性:材料的µ -CT和SEM分析揭示了不同的微观结构,即使它们属于同一类材料。可以证明,µ -CT和SEM成像是材料的微观结构和相关机械性能的有价值的工具。
太空领域的研究和使用,包括最近对月球及更远太空的载人航天探索的复兴,推动了对航天器热防护系统 (TPS) 的更高性能材料的搜索。陶瓷和高性能碳都表现出适合 TPS 应用的材料特性,但可以使用增材制造 (AM) 方法最大限度地提高其性能。振动辅助打印 (VAP) 是一种新开发的 AM 工艺,可以使用高粘度的陶瓷形成聚合物与固体陶瓷颗粒的混合物来制造零件。这项工作探索了利用 VAP 的陶瓷夹层 TPS 的 AM。TPS 外层由碳化硅 (SiC) 组成,具有高抗氧化性、高熔点和低热导率。薄的中间层由碳基材料组成,可提供高平面热导率以重新分配热量。数值模拟表明,这种配置可有效降低模拟再入条件下的最高温度。由聚碳硅烷聚合物和纯 SiC 粉末制备出高粘度混合物,可使用 VAP 进行 3D 打印,并使用碳负载或碳纤维负载细丝通过标准热塑性挤出打印用于组装的中间层。SiC 组件固化温度高达 248.8°C,热解温度高达 1,600°C,并通过 SEM、EDS 和 XRD 进行表征并测试抗压强度。
本文解决了石蜡矿床的问题,特别关注预防化学方法。在高能油生产中使用的抑制剂的有效性取决于其注入点,因此需要将试剂更深入地放置在“油储层孔”系统中。这项研究的目的是开发一种用于长期蜡抑制的方法,并通过实验评估井操作参数对抑制剂释放速率中生产液的影响。文章概述了一种石蜡抑制技术,该技术涉及将固体多孔颗粒注射到液压裂缝中,该骨折具有双重目的,既可以作为proppant和抑制剂来源。已经开发了一种方法,该方法是用固体乙烯 - 乙酸乙烯酯(EVA)饱和的多孔陶瓷颗粒,该方法在被油洗涤时逐渐释放到油流中,起作用,作为抑郁剂。过滤实验表明,这种抑制方法将抑制剂长期释放到油流中。即使过滤470孔量,通过模型支撑盒过滤的机油样品中的EVA含量仍保持在最小有效浓度水平上。从而减少了旨在防止和去除“石油储层”系统中的石蜡沉积物的干预频率。
新加坡,2024 年 10 月 15 日下午 5 点 新加坡南洋理工大学科学家利用古老的建筑方法制造现代微粒 受到古代东亚使用“榫槽”技术建造木结构的方法的启发,新加坡南洋理工大学 (NTU Singapore) 的科学家开发了一种制造先进陶瓷微粒的新方法,这种微粒的宽度略大于人类头发的宽度。NTU 材料科学家利用这种方法制造了一种微流控芯片,可以以前所未有的复杂性和精度生产和塑造微小的陶瓷微粒。这些微粒具有各种复杂的形状和精确的尺寸,例如十齿齿轮或具有斜边的三角形,可用于微电子、航空航天、能源、医疗和机械工程等领域的广泛应用。例如,四面体形(四面)的二氧化锆 (ZrO ₂ ) 微粒可以改变太赫兹发射器和接收器的性能和功能——常用于安全、医疗诊断和制造业质量控制等成像领域。同样,八面体形(八面)的二氧化硅 (SiO ₂ ) 微粒可以增强材料的强度和韧性,而齿轮形陶瓷颗粒对于机械驱动至关重要。微加工和激光烧结等传统制造方法在分辨率和批量生产如此微小复杂形状的能力方面存在局限性。由于材料特性和微粒的微小尺寸,当前的方法难以实现锋利和不透明的微粒。相比之下,NTU 的方法通过采用简单的三步流程有效地解决了这些挑战。
髋关节置换术有效地治疗先进的骨关节炎,因此有权被称为“ 20世纪的运作”。随着人口统计的转变,仅美国每年将在2030年每年进行850 000个节肢动物。许多植入物现在具有陶瓷头,具有强度和耐磨性。尽管如此,一部分,高达0.03%的寿命可能会破裂,要求复杂的去除程序。为了解决这个问题,提出了一种无辐射,基于图像引导的外科手术技术。该方法使用陶瓷植入物材料的固有荧光,通过对普遍植入物类型的化学和光学分析证明。特别是,Biolox Delta植入物在700 nm附近表现出强烈的荧光,具有74%的光致发光量子产率。发射尾巴被识别为延伸到近红外(NIR-I)生物透明度范围,这形成了片段无标签的可视化的重要先决条件。这种红宝石样的荧光可以归因于氧化氧化铝基质内的CR,从而通过相机辅助技术可以检测到甚至具有深座的毫米大小的片段。此外,荧光显微镜还可以检测µM大小的陶瓷颗粒,从而使滑膜流体和组织学样品中的碎屑可视化。这种无标签的光学成像方法采用了易于使用的设备,并且可以无缝过渡到临床环境而没有明显的调节屏障,从而提高了陶器植入物拆卸程序的安全性,效率和微创性质。
陶瓷/聚合物纳米复合材料因具有设计独特性和性能组合而受到广泛关注,据报道是传统复合材料中没有的 21 世纪材料。在这项工作中,我们尝试研究、开发和改进设计和制造的陶瓷/聚合物生物复合材料的生物力学,用于在复杂骨折和骨疾病的情况下修复和替换人体天然骨,方法是将纳米填料陶瓷颗粒添加到聚合物基质纳米复合材料 (PMNC) 中,以制造混合二氧化钛和氧化钇稳定的氧化锆增强高密度聚乙烯 (HDPE) 基质生物复合材料。使用热压技术在不同压缩压力 (30、60 和 90 MPa) 和复合温度 (180、190 和 200 °C) 下研究了这些生物活性复合材料。 SOLIDWORKS 17.0 和有限元 ANSYS 15.7 软件程序用于模拟、建模和分析能够承受最高应力和应变的股骨生物力学。响应面法 (RSM) 技术用于改进和验证结果。对于所有制造的纳米生物复合材料系统,结果表明,获得的输出参数值随着工艺输入参数的增加而增加,应变能和等效弹性应变值也反之亦然,纳米陶瓷成分也是影响结果的主要因素。本研究的主要研究结果推断,随着纳米陶瓷粉末(TiO 2 )含量从 1% 增加到 10%,压缩断裂强度和显微维氏硬度值分别增加了 50% 和 8.45%,而当添加 2% 的氧化锆(ZrO 2 )时,压缩断裂强度和显微硬度分别增加了 28.21% 和 40.19%。当使用 10% TiO 2 + 2% ZrO 2 /HDPE 生物复合材料时,在最高压缩率下
增材制造 (AM) 或工业三维 (3D) 打印推动了设计和生产可能性的全新领域;它突破了复杂产品生产应用和下一代材料开发领域的界限。AM 技术应用了多种原料,包括具有不同尺寸、形状和表面化学性质的塑料、金属和陶瓷颗粒粉末。此外,粉末经常被重复使用,这可能会改变颗粒的物理化学性质,从而改变其毒性潜力。AM 生产技术通常依靠激光或电子束来选择性地熔化或烧结颗粒粉末。在整个生产和加工阶段,原料粉末上的大量能量输入会产生多种副产品,包括不同数量的原始微粒、纳米颗粒、飞溅物和挥发性化学物质,这些都会排放到工作环境中。微米和纳米级尺寸可能使颗粒与生物屏障相互作用并穿过生物屏障,进而导致意想不到的不良后果,包括炎症、氧化应激、信号通路激活、遗传毒性和致癌性。AM 相关风险的另一个重要方面是由于聚合物分解和聚合物颗粒中化学物质的高温转化而导致的单体和低聚物的排放/泄漏,无论是在生产、使用过程中还是在体内(包括靶细胞中)。这些化学物质是直接毒性、遗传毒性和内分泌干扰的潜在诱因。尽管如此,我们对 AM 颗粒粉末及其副产物是否会对人体产生不利影响的了解仍然很大程度上不足,这促使对整个 AM 生命周期(从原始和再利用到空气中的颗粒)进行全面的安全评估。因此,本综述将详细介绍:1)AM 原料粉末的简要概述、重复使用对颗粒物理化学性质的影响、AM 行业的主要暴露途径和防护措施,2)颗粒生物学特性和关键毒理学终点在颗粒安全评估中的作用,以及 3)用于 AM 安全评估的下一代纳米安全毒理学方法。总之,所提出的测试方法将使人们更深入地了解现有和