摘要:在发射环境中,卫星承受着严重的动态载荷。发射环境中的这些动态载荷可能导致有效载荷故障或任务失败。为了提高卫星的结构稳定性并使太空任务可靠地执行,必须有一个减少结构振动的加固结构。然而,对于有源小型SAR卫星,质量要求非常严格,这使得很难应用额外的结构来减振。因此,我们开发了一种碳纤维增强塑料(CFRP)基层压补片,以获得具有轻量化设计的减振结构,以提高S-STEP卫星的结构稳定性。为了验证基于CFRP的补片的减振性能,在试件级别进行了正弦和随机振动试验。最后,通过正弦和随机振动试验对带有所提出的基于CFRP的层压补片的S-STEP卫星的结构稳定性进行了实验验证。验证结果表明,基于CFRP的层压补片是一种有效的解决方案,可以有效降低振动响应,而无需对卫星结构设计进行重大更改。本研究开发的轻量化减振机制是保护振动敏感部件的最佳解决方案之一。
MIL-STD-202-105 - 气压(降低)。MIL-STD-202-106 - 防潮性。MIL-STD-202-107 - 热冲击。MIL-STD-202-109 - 爆炸。MIL-STD-202-112 - 密封。MIL-STD-202-204 - 振动频率。MIL-STD-202-208 - 可焊性。MIL-STD-202-209 - 射线检查。MIL-STD-202-210 - 耐焊接热性。MIL-STD-202-211 - 端子强度。MIL-STD-202-212 - 加速度。MIL-STD-202-213 - 冲击(指定脉冲)。 MIL-STD-202-214 - 随机振动。MIL-STD-202-215 - 耐溶剂性。MIL-STD-202-217 - 粒子撞击噪声检测 (PIND)。MIL-STD-202-304 - 电阻-温度特性。MIL-STD-790 - 电气、电子和光纤零件规格的既定可靠性和高可靠性合格产品清单 (QPL) 系统的标准实践。
■ 触点数量:半模块 - 72;全模块 - 144 ■ 间距:1.8 毫米 ■ 额定电流:每个触点 1.5625 A 每个电源晶片 12.5 A(使用 30°C 温升和 1 盎司铜降额) ■ 提取力:通常每个触点 1.2 盎司 ■ 额定温度:-55°C 至 125°C ■ 绝缘体材料:LCP(液晶聚合物) ■ 触点镀层:50 µin。镀金镍层 ■ 可燃性等级:UL94-VO ■ 介电耐压:500 VAC ■ 低电平电路电阻:最大 8 m Ω ■ 绝缘电阻:最大 500 M Ω ■ 随机振动:15 Grms,每轴 10 Hz 至 2000 Hz,持续 90 分钟,符合 MIL-STD-1344,方法 2005,测试条件 III ■ 机械冲击:100 G,6 ms 锯齿响应,符合 MIL-STD-1344,方法 2004,测试条件 G
业界普遍的做法是,通过根据 RTCA- DO160 或 MIL-STD810 等标准频谱对系统进行鉴定,以证明设计符合振动要求 (CS-25.301、CS-25.305 和 CS- 25.1309)。这种方法适用于非气动结构,但当机械系统嵌入高速气流中时,流体结构耦合效应引起的物理变化可能会使振动频谱不保守:正常运行期间结构的实际响应可能高于振动台上获得的响应。本研究展示了一个可以发现此事件的实际工程应用,并证实了流体结构耦合对系统结构响应的影响。使用加速度计监测 APU 进气系统的飞行和风洞测试振动,并与在振动台上进行的地面鉴定测试和 FEM(有限元模型)随机振动分析进行比较,结果表明实际激励高于地面测试频谱引起的响应。
业界普遍的做法是,通过根据 RTCA- DO160 或 MIL-STD810 等标准频谱对系统进行鉴定,以证明设计符合振动要求 (CS-25.301、CS-25.305 和 CS- 25.1309)。这种方法适用于非气动结构,但当机械系统嵌入高速气流中时,流体结构耦合效应引起的物理变化可能会使振动频谱不保守:正常运行期间结构的实际响应可能高于振动台上获得的响应。本研究展示了一个可以发现此事件的实际工程应用,并证实了流体结构耦合对系统结构响应的影响。使用加速度计监测 APU 进气系统的飞行和风洞测试振动,并与在振动台上进行的地面鉴定测试和 FEM(有限元模型)随机振动分析进行比较,结果表明实际激励高于地面测试频谱引起的响应。
摘要:本文介绍了如何使用故障物理 (PoF) 方法在早期设计阶段快速准确地预测印刷电路板 (PCB) 级电力电子设备的寿命。结果表明,精确建模硅金属层、半导体封装、印刷电路板 (PCB) 和组件的能力可以预测由于热、机械和制造条件导致的焊料疲劳故障。该技术可以预测 PCB 的生命周期,同时考虑到它在运行期间会遇到的环境压力。它主要涉及将电子计算机辅助设计 (eCAD) 电路布局转换为具有精确几何形状的计算流体动力学 (CFD) 和有限元分析 (FEA) 模型。由此,应用热循环、机械冲击、固有频率以及谐波和随机振动等应力源来了解 PCB 退化以及半导体和电容器磨损,并相应地提供高保真功率 PCB 建模的方法,随后可用于促进飞机系统和子系统的虚拟测试和数字孪生。
摘要。小行星影响与挠度评估(AIDA)是NASA DART任务与ESA HERA任务之间的合作。目的范围是通过动力学碰撞研究小行星挠度。DART航天器将与Didymos-B碰撞,而地面站监视轨道变化。HERA航天器将研究影响后情况。HERA航天器由主航天器和两个小立方体组成。HERA将通过摄像头,雷达,卫星到卫星多普勒跟踪,LIDAR,地震测定法和重力法监测小行星。在本文中报道了LIDAR工程模型高度计Helena上的第一次迭代。Helena是一个TOF高度计,可提供时间标记的距离和速度测量值。LIDAR可用于在小行星导航附近的支持,并提供科学信息。Helena设计包括一个微芯片激光和低噪声传感器。这两种技术之间的协同作用使得可以开发一种紧凑的仪器,以达到14公里的范围测量。热力学和辐射模拟。该设计受到振动,静态和热条件的影响,并且可以通过结果结论,望远镜符合随机振动水平,静态负载和工作温度。
制造工程,微加工,加工,精密工程36。奎师那·库马尔(Krishna Kumar),r 1956年的计算力学;轮胎力学37。克里希那村(Krishnamurthy),MV 1941热工程和太阳能科学38。Kumar,Pramod 1975热能系统;传热39。lal,GK 1938金属形成;金属研磨40。Majumdar,BC 1941机器设计,摩擦学41。Mallik,AK 1947振动工程,机制42。Mathur,HB 1936内燃机,燃料燃烧和污染43。Mishra,PK 1945年非惯例制造; EDM和激光处理44。Mohanty,AR,1965年的声学和工业噪声控制;机械状况监测;水下声学,汽车工程,机器设计45。Munjal,ML 1945技术声学;噪声和振动控制;消音器和消音器46。Muralidhar,K 1958流体力学,传热,光学测量,激光层析成像,界面现象,生物医学成像,气体水合,血液流变学,喷气机和唤醒47。Narasimhan,Arunn 1971在多孔媒体中运输; Bio-Thermofluids48。Narasimhan,R 1960骨折力学,计算固体力学49。Narayanan,S 1945振动,声学,非线性动力学,随机振动,智能结构50。Narayankhedkar,KG 1946年低温工程,制冷和空调51。natarajan,R 1941年燃烧,能源科学技术