许多高温推进应用都需要高温难熔金属。难熔金属价格昂贵,难以制造,购买率高,供应商少。增材制造 (AM) 用于生产 C103、钼 (Mo) 和钨 (W) 反应室和推力隔离器以及铱超细晶格催化剂,以集成到 1 N 绿色推进推进器中。难熔金属 AM 正在开发中,与传统 AM 合金一样,在投入使用前需要进行大量后处理,包括粉末热处理、表面光洁度增强、检查和加工。有限的原料来源、高温加工、氧敏感性、易断裂性质以及高温机械测试的需求限制了能够对 AM 难熔材料进行后处理的合格设施的数量,这增加了成本和进度限制。但是,正确实施的难熔金属 AM 可以通过大大提高设计灵活性、新材料选择、降低价格、缩短交货时间并利用不断增长的 AM 商业供应基础来克服现有的制造限制。
摘要:高熵合金 (HEA) 由 5–35 at% 的五种或更多种元素组成,具有高配置熵,不形成金属间化合物,具有单相面心立方结构或体心立方结构。特别是,耐火高熵合金 (RHEA) 基于在高温下具有优异机械性能的耐火材料,在室温下具有高强度和硬度,在低温和高温下具有优异的机械性能。在本研究中,使用直接能量沉积 (DED) 沉积了 Ti-Nb-Cr-V-Ni-Al RHEA。在 Ti-Nb-Cr-V-Ni-Al 的微观结构中,σ、BCC A2 和 Ti2Ni 相似乎与相图中预测的 BCC A2、BCC B2 和 Laves 相不同。该微观结构类似于铸造的 Ti-Nb-Cr-V-Ni-Al 的微观结构,并具有构造的细晶粒尺寸。发现这些微观组织的生长是由于 DED 工艺,该工艺具有快速凝固速度。细小的晶粒尺寸导致高硬度,测量的 Ti-Nb-Cr-V-Ni-Al 显微硬度约为 900 HV。此外,为了分析由耐火材料组成的 Ti-Nb-Cr-V-Ni-Al 的热性能,通过预热试验分析了热影响区 (HAZ)。由于 Ti-Nb-Cr-V-Ni-Al 的热扩散率高,HAZ 减小了。
在竞争激烈的全球市场上,具有极端且通常不寻常性能组合的金属材料一直供不应求。当前最先进的金属材料,如镍基高温合金,正在接近其发展的物理极限,因为未来应用所需的工作温度接近或超过了它们的熔点。能源和交通等社会影响重大领域的进步要求探索和开发新型材料解决方案,以在更高温度下改善结构或功能性能。先进难熔合金,特别是难熔金属间复合材料 (RMIC),如 Nb-硅化物原位复合材料、Mo-硅化物基合金、难熔高熵合金 (RHEA)、难熔复合浓缩合金 (RCCA) 和难熔高温合金 (RSA),作为潜在的结构材料,其使用温度远超镍基高温合金,引起了广泛关注 [1-5]。其中一些合金的优异性能使它们成为当前和未来广泛应用的有希望的候选材料。这些先进材料基于 13 种难熔金属,即钨、铼、锇、钽、钼、铌、铱、钌、铪、铑、钒、铬和锆,其熔点介于 1855 ◦ C(锆)和 3422 ◦ C(钨)之间。它们还可能包含其他元素,例如铝、硅和钛,旨在改善设计所需的性能(主要是机械和/或环境性能)。元素周期表中不同族的难熔金属的性能差异很大。难熔金属及其合金的共同特性是熔点高、高温强度高、对液态金属具有良好的耐腐蚀性。难熔金属在极高的温度下也能保持稳定的蠕变变形,部分原因是它们的熔点高。难熔金属可加工成线材、锭材、钢筋、板材或箔材。它们用途广泛,包括热金属加工、熔炉、照明、润滑剂、核反应控制棒、化学反应容器和空间核能系统。它们也是航空航天应用的关键高温材料。此外,难熔金属还可用作合金添加剂——例如,用于钢、高温合金和高熵合金 (HEA)。最后,应该提到的是,大多数难熔金属都具有生物相容性,为开发用于植入应用的生物材料铺平了道路。低温加工性差和高温氧化性差是大多数难熔金属和合金的缺点。通过使用特定的难熔金属和合金添加剂组合可以改善氧化性能。与环境的相互作用会显著影响它们的高温蠕变强度。这些金属和合金在高温下的应用通常需要使用保护气氛或涂层。最近,RMIC、RHEA、RCCA 和 RSA 已成为深入研究的主题,其中许多研究涉及用于航空航天应用的新型超高温材料的设计。本期特刊发表的论文提供了新的信息
在竞争激烈的全球市场上,具有极端且通常不寻常性能组合的金属材料一直供不应求。当前最先进的金属材料,如镍基高温合金,正在接近其发展的物理极限,因为未来应用所需的工作温度接近或超过了它们的熔点。能源和交通等社会影响重大领域的进步要求探索和开发新型材料解决方案,以在更高温度下改善结构或功能性能。先进难熔合金,特别是难熔金属间复合材料 (RMIC),如 Nb-硅化物原位复合材料、Mo-硅化物基合金、难熔高熵合金 (RHEA)、难熔复合浓缩合金 (RCCA) 和难熔高温合金 (RSA),作为潜在的结构材料,其使用温度远超镍基高温合金,引起了广泛关注 [1-5]。其中一些合金的优异性能使它们成为当前和未来广泛应用的有希望的候选材料。这些先进材料基于 13 种难熔金属,即钨、铼、锇、钽、钼、铌、铱、钌、铪、铑、钒、铬和锆,其熔点介于 1855 ◦ C(锆)和 3422 ◦ C(钨)之间。它们还可能包含其他元素,例如铝、硅和钛,旨在改善设计所需的性能(主要是机械和/或环境性能)。元素周期表中不同族的难熔金属的性能差异很大。难熔金属及其合金的共同特性是熔点高、高温强度高、对液态金属具有良好的耐腐蚀性。难熔金属在极高的温度下也能保持稳定的蠕变变形,部分原因是它们的熔点高。难熔金属可加工成线材、锭材、钢筋、板材或箔材。它们用途广泛,包括热金属加工、熔炉、照明、润滑剂、核反应控制棒、化学反应容器和空间核能系统。它们也是航空航天应用的关键高温材料。此外,难熔金属还可用作合金添加剂——例如,用于钢、高温合金和高熵合金 (HEA)。最后,应该提到的是,大多数难熔金属都具有生物相容性,为开发用于植入应用的生物材料铺平了道路。低温加工性差和高温氧化性差是大多数难熔金属和合金的缺点。通过使用特定的难熔金属和合金添加剂组合可以改善氧化性能。与环境的相互作用会显著影响它们的高温蠕变强度。这些金属和合金在高温下的应用通常需要使用保护气氛或涂层。最近,RMIC、RHEA、RCCA 和 RSA 已成为深入研究的主题,其中许多研究涉及用于航空航天应用的新型超高温材料的设计。本期特刊发表的论文提供了新的信息
摘要:难熔高熵合金是一种很有潜力的高温结构材料,为获得高强度的难熔高熵合金,在NbMoTiVW难熔高熵合金中添加不同量的Si,研究了Si对NbMoTiVWSi x 合金的相组成、组织特征和力学性能的影响。结果表明:当Si添加量为0、0.025和0.05(摩尔比)时,合金由晶间区的初生BCC和二次BCC组成;当Si添加量增加到0.075和0.1时,形成了包括硅化物相和二次BCC相的共晶组织。初生BCC相呈现树枝状形貌,加入Si使其细化;当Si添加量由0增加到0.1时,晶间区的体积分数由12.22%增加到18.13%。 Si的加入使NbMoTiVW合金的抗压强度由2 242 MPa提高到2 532 MPa,屈服强度也随着Si的加入而提高,NbMoTiVWSi 0.1的屈服强度达到最大值2 298 MPa,但合金的断裂应变由15.31%降低到12.02%。随着Si的增加,合金的断裂机制由韧性和准解理混合断裂转变为解理断裂。Si的加入使合金的强化作用归因于初生BCC相的细化、次生BCC相的体积分数的增加以及共晶组织的形成。
WC-Co 金属陶瓷,也称为硬质合金,是摩擦学应用中最广泛使用的硬质材料。W 和 Co 价格的不断上涨以及经济方面的不利因素提醒人们 WC 和 Co 需要被取代。WO 3 是一种有毒物质,在碳化钨应用过程中在空气中形成,在 750°C 以上升华,在室温下可溶于水。Co 的取代还受到其活性氧化物 Co 3 O 4 的潜在致癌性质的驱动。铌是一种与钨类似的难熔金属,可以部分甚至完全取代硬质合金中的钨。NbC 是一种熔点为 3522°C 的难熔碳化物,它具有热稳定性,在 Fe、Ni 和 Co 中的溶解度非常低。此外,相关氧化物 Nb 2 O 5 具有热力学稳定性,熔点为 1512°C。由于 Co 和 NbC 的润湿性相对较差,在 WC-Co 中用 NbC 替代 WC 必然需要同时替换 Co 粘合剂。NbC-Ni 和 NbC-Fe 或 NbC-Mo 基材料将成为 WC-Co 材料的“非关键且无害”替代品。
这家德国初创公司是一家为航天、国防、能源和相关行业提供先进金属增材制造服务的供应商。公司专注于加工铌合金 (C103)、镍合金 (In718)、钛合金 (Ti64、Ti CP1)、铝合金 (A6061、AlSi10Mg)、难熔金属 (钽、钨) 和不锈钢 (SS316L)。该公司在创新合金工艺开发方面拥有丰富的专业知识,并担任多种应用的开发合作伙伴和产品设计师。
四甲基磷族化合物最近才因其作为红外非线性光学 (IR-NLO) 材料的优势而受到关注,2 - 9 '16 '17 与更受欢迎和研究更多的硫族化物相比。我们为磷化物开发的合成方法包括磷与原子混合的难熔前体预熔 M+Si 的反应,从而发现了几种以前无法获得的化合物。21819 在本研究中,我们将这种方法扩展到砷化物。基于标题化合物 lrSi 3 As 3 的合成和发现的简易性,预计许多其他金属四甲基砷化物也具有同样令人兴奋的特性。报道了 lrSi 3 As 3 的结构-性质关系。
第十八届国际新型纳米材料研讨会(ISNNM)将重点关注先进材料加工、先进粉末冶金、增材制造和印刷技术、计算机辅助材料工程、能源和环境材料、电磁材料、稀有金属和回收、难熔金属和硬质材料、纳米陶瓷等材料研究。将涵盖这些材料的所有主要方面,包括合成、机理、微观结构、性能和应用。研讨会将提供材料领域中令人兴奋且快速发展的最新研究成果和最新技术概述,并邀请国际知名科学家就这些主题发表演讲。欢迎制造商的投稿和展品,以促进科学家和工业界之间的进一步互动。热忱欢迎以口头或海报报告形式注册和投稿,研讨会对所有人开放。入选论文将在同行评审后发表在 SCI 期刊上。
钼 (Mo) 和钨 (W) 因利用这些难熔金属的特殊材料特性而得到广泛的应用。演讲将概述 Mo 和 W 在微电子、显示器和太阳能行业的重要应用,并介绍特定应用所需的最相关材料特性。钼因其在玻璃上的优异附着力、高电导率和良好的扩散阻挡性能而用于显示器的薄膜晶体管 (TFT) 和薄膜太阳能电池的电极。Mo 和 W 薄膜的高密度和良好的电阻率对于 MEMS 组件(如 RF 滤波器 (SAW/BAW) 或压电传感器)非常重要。在半导体制造中,由于电子在小临界尺寸下的平均自由程较长,Mo 和 W 可以作为薄膜材料发挥关键作用,以实现更小的节点和器件结构。对于电致变色应用,通常使用氧化钨基材料作为有源层。