格陵兰岛在公元86年至1997年的2厘米分辨率下,年度为NS1-2011年年表。Pangea,272 https://doi.org/10.1594/pangaea.940553; Colle Gnifetti:Sigl,Michael;艾布拉姆(Nerilie J)加布里里(Jacopo);詹克(Jenk),273西奥(Theo M);奥斯蒙特,迪米特里; Schwikowski,Margit(2018):Black Carbon(RBC),Bismuth,Lead和274个从1741年至2015年的公元174个年度记录,来自Colle Gnifetti Ice Core(瑞士/意大利阿尔卑斯山)。Pangea,275 https://doi.org/10.1594/pangaea.894785;山Elbrus:doi:10.5194/acp-17-3489-2017;通过加拿大极地数据目录:TTPS://www.po- 277 lardata.ca/pdcsearch/pdcsearch.jsp?可以根据要求从通讯作者那里获得后处理278个代码。279
在南极的表面下方是数十万年来大气组成的变化的完美记录。这个独特的档案使我们能够在1950年代现代大气监测开始之前重建大气CO 2,准确率仅为百万分之几。数据揭示了大气中的自然变化在冰川间冰期,千禧一代和百年纪念尺度上,因此随着时间的推移提供了可靠的辐射性重建。此外,可以以足够精度测量CO 2的稳定同位素,以在这些相同的时间尺度上量化CO 2的源和下沉。组合,CO 2的浓度和同位素组成使我们能够约束过去的气候灵敏度(即气候如何响应CO 2的变化)和碳气候反馈(即碳循环如何响应气候变化的碳循环))。
• 第一年/第二年/第三年的地面实验 • 由博伊西州立大学的 HP Marshall 执行 • 目标是初步演示如何使用宽带天线进行 SWE 测量 • 使用 Harris IR&D 开发的 2-18 GHz CSA 天线和在此基础上开发的 Alpha Build 天线 • 利用博伊西州立大学现有的 FMCW 雷达成功测量积雪深度和分层 • 演示了使用更窄波束的 alpha build 天线改进的测量结果性能
4.0 范围................................................................................................................ 3
• 美国宇航局十年调查的雪和冷地过程 (SCLP) 任务概念使用四种仪器收集积雪范围和特征的数据(深度、密度、雪水当量 (SWE))
参考Hock,R。2003。“温度指数在山区的建模。”水文,山水和水资源杂志,282(1):104–15。Kraaijenbrink,P.D.A.,M.F.P。 Bierkens,A。F。Lutz和W.W. Immerzeel。 2017。 “全球温度升高为1.5摄氏度对亚洲冰川的影响。” Nature 549(7671):257–60。 Lievens,H.,M。Demuzere,H.P。 Marshall,R.H。Reichle等。 2019。 “从太空观察到的北半球山脉的雪深度变化。”自然通讯10(1):1-12。 出版为:Kraaijenbrink,P。D. A.,Stigter,E。E.,Yao,T。和Immerzeel,W。W.(2021)。 气候变化决定亚洲的雪融合水供应。 nat。 攀登。 chang。 11,591–597。 doi:10.1038/s41558-021-01074-x。Kraaijenbrink,P.D.A.,M.F.P。Bierkens,A。F。Lutz和W.W. Immerzeel。 2017。 “全球温度升高为1.5摄氏度对亚洲冰川的影响。” Nature 549(7671):257–60。 Lievens,H.,M。Demuzere,H.P。 Marshall,R.H。Reichle等。 2019。 “从太空观察到的北半球山脉的雪深度变化。”自然通讯10(1):1-12。 出版为:Kraaijenbrink,P。D. A.,Stigter,E。E.,Yao,T。和Immerzeel,W。W.(2021)。 气候变化决定亚洲的雪融合水供应。 nat。 攀登。 chang。 11,591–597。 doi:10.1038/s41558-021-01074-x。Bierkens,A。F。Lutz和W.W. Immerzeel。2017。“全球温度升高为1.5摄氏度对亚洲冰川的影响。” Nature 549(7671):257–60。Lievens,H.,M。Demuzere,H.P。 Marshall,R.H。Reichle等。 2019。 “从太空观察到的北半球山脉的雪深度变化。”自然通讯10(1):1-12。 出版为:Kraaijenbrink,P。D. A.,Stigter,E。E.,Yao,T。和Immerzeel,W。W.(2021)。 气候变化决定亚洲的雪融合水供应。 nat。 攀登。 chang。 11,591–597。 doi:10.1038/s41558-021-01074-x。Lievens,H.,M。Demuzere,H.P。Marshall,R.H。Reichle等。 2019。 “从太空观察到的北半球山脉的雪深度变化。”自然通讯10(1):1-12。 出版为:Kraaijenbrink,P。D. A.,Stigter,E。E.,Yao,T。和Immerzeel,W。W.(2021)。 气候变化决定亚洲的雪融合水供应。 nat。 攀登。 chang。 11,591–597。 doi:10.1038/s41558-021-01074-x。Marshall,R.H。Reichle等。2019。“从太空观察到的北半球山脉的雪深度变化。”自然通讯10(1):1-12。出版为:Kraaijenbrink,P。D. A.,Stigter,E。E.,Yao,T。和Immerzeel,W。W.(2021)。气候变化决定亚洲的雪融合水供应。nat。攀登。chang。11,591–597。 doi:10.1038/s41558-021-01074-x。11,591–597。doi:10.1038/s41558-021-01074-x。
