腔体镜 793 Nm 光纤耦合激光二极管的供应和保修 25 Kvar、440 伏、备用电容器单元的供应 双极输出电源模块 2 英寸安装零级石英晶体四分之一波长 Pl 铝壳线绕电阻器 半电动液压堆垛机 5m 有机玻璃板 氯化聚氯乙烯 (Cpvc) 管道和配件 单晶基板 为手套箱端口供应氯丁橡胶折叠手套 残余气体分析仪的供应、安装和调试 70 瓦单端金属卤化物 (Mh) 灯作为 Pe 1 英寸 C 平面 (0001) 蓝宝石晶片 仪器冷却风扇两千万卢比,10 平方。毫米铜导体,1100V 级,XLPE 子连接器冷阴极真空计头 Metravi 高度叶片风速计,品牌:Metravi Tristar 钢棘轮式扭矩扳手,范围 5-35 Nm
质量作用定律、速率和平衡 速率常数和反应级数 速率定律和反应机理(零级、一级、二级反应和分数级) 碰撞理论、过渡态理论和阿伦尼乌斯方程 稳态近似 测量反应动力学和确定速率常数的方法,动力学机制建模 酶动力学(米氏动力学、抑制、变构酶;代谢中的酶反应) 影响反应速率的因素(反应的温度依赖性和活化参数、粘度和分子动力学、反应的扩散控制) 复杂反应的动力学分析(瞬态和反应序列研究简介;电子转移和自由基反应动力学;聚合动力学) 生物分子反应动力学和分子药理学简介(蛋白质 - 配体结合和交换动力学;结合位点、单位点和多个独立位点模型、与膜受体结合、降维)
本研究旨在配制酮咯酸氨丁三醇 (KTM) 微海绵结肠靶向片剂,用于治疗炎症性肠病。Eudragit S-100 聚合物微海绵用于药物输送。药物微海绵采用准乳液溶剂扩散技术制造,并根据粒度、生产率、包封率、表面形态和微粒学特性进行评估。结果表明,微海绵具有良好的生产率、药物包封率和球形形态。微海绵片剂 (MBT) 采用乳糖直接压制制备,并根据药物含量和体外药物释放动力学进行评估。MBT 显示出理想的药物量 (90-95%) 和长达 10 小时的药物释放曲线。MBT 中的药物释放遵循零级动力学和扩散控制机制。因此,本研究可以成为 KTM 结肠靶向输送的新方法。
这项研究的目的是建立曲线下的零级紫外线光谱学 - 吸光度和零订单区域(AUC)方法(AUC)方法,用于估计散装和阴道胶囊中硝酸硝酸盐的估计。芬太纳唑硝酸盐是一种抗真菌药物,它完全不溶于水。甲醇用作溶剂溶解芬太纳唑硝酸盐的溶解度。溶解在甲醇中时,发现硝酸芬太纳唑的最大吸收在波长253 nm处。这些方法基于在253nm处的吸光度测量和曲线下面积的整合,以分析242-262 nm波长范围内的芬康唑硝酸盐。在两种方法的相关系数r 2> 0.99的5-30 µg/ml浓度范围内,药物遵循线性。根据ICH指南,对所提出的方法进行了准确性(恢复%),精度,可重复性和坚固性的验证。将所提出的方法用于阴道胶囊中硝酸硝酸盐的定性和定量估计,结果与所声称的标签非常吻合。开发的方法可用于散装和阴道胶囊中硝酸盐的常规分析。
空间进行可能导致大气危害事故的工作活动。可以使用电子鼻 (e-nose) 与移动机器人的集成来监测大气空气样本。在这项工作中,我们报告了电子鼻的校准,它由三个独立的金属氧化物半导体 (MOS) 气体传感器以及用于环境监测的氧气、温度和湿度传感器组成。样品气体使用两个不同的气瓶。气瓶 1 包含硫化氢 (H 2 S)、一氧化碳 (CO) 和甲烷 (CH 4 ),而气瓶 2 包含零级空气。来自 MOS 气体传感器响应的模拟数字转换器 (ADC) 读数被转换为百万分率 (ppm) 和百分比 (%) 读数。使用商用气体检测器验证气瓶中的气体浓度。计算电子鼻中 MOS 气体传感器与商用气体检测器对气瓶 1 的读数差作为校准值。暴露的气瓶 2 用于识别 MOS 气体传感器返回基线水平的能力。结果证明了所开发的电子鼻可用于环境气体检测和监测的能力。
这项研究的目的是建立曲线下的零级紫外线光谱学 - 吸光度和零订单区域(AUC)方法(AUC)方法,用于估算大量和药物剂型的多x基胺琥珀酸酯。多克利胺琥珀酸酯是具有明显镇静特性的组胺H1拮抗剂。它用于过敏和抗精性,抗气和催眠。多克利胺也已在兽医应用中施用,以前用于帕金森氏症,蒸馏水被用作溶剂溶解毒胺琥珀酸酯的溶解度。当溶解在蒸馏水中时,发现多克利胺琥珀酸酯的最大吸收在波长260nm处。这些方法基于在260nm处的吸光度测量和曲线下面积的整合,以分析251.20-267.20 nm的波长范围内的多x胺琥珀酸酯。在10-60 µg/ml的浓度范围内,与相关系数r 2> 0.99的浓度范围保持线性。根据ICH指南,对所提出的方法进行了准确性(恢复%),精度,可重复性和坚固性的验证。提出的方法用于定性和片剂中多克莱明琥珀酸酯的定量估计,结果与所声称的标签非常吻合。开发的方法可用于散装和药剂片的多x基胺的常规分析。
我们引入了一种新的生成方法,用于合成3D几何形状和单视收集的图像。大多数现有的方法预测了体积密度,以呈现多视图一致的图像。通过使用神经辐射场进行体积重新定位,它们继承了一个关键限制:生成的几何形状嘈杂且不受限制,从而限制了输出网格的质量和实用性。为了打扮这个问题,我们提出了Geogen,这是一种新的基于SDF的3D生成模型,以端到端的方式训练。最初,我们将体积密度重新解释为签名距离函数(SDF)。这使我们能够引入有用的先验来生成有效的网格。然而,这些先验阻止了生成模型学习细节,从而将方法的可观性限制在现实世界中。为了解决这个问题,我们使转换可学习,并限制渲染深度图与SDF的零级集合一致。通过对手训练的镜头,我们鼓励网络在输出网格上产生更高的忠诚度细节。进行评估,我们介绍了一个从360度摄像机角度捕获的人类头像的合成数据集,以克服现实世界数据集所面临的挑战,而实际数据集通常缺乏3D同意,并且不涵盖所有摄像机角度。我们在多个数据集上进行的实验表明,与基于神经辐射场的先前发电模型相比,Geogen在视觉和定量上产生更好的几何形状。
不可或缺的信息 Laboratoire d'accueil : Institut Galien Paris-Saclay (IGPS) CNRS UMR8612 Adresse complète du lieu du stage : Eq. MULTIPHASE - 药学多尺度物理化学,巴黎萨克雷大学,HM1 楼,17 Avenue des Sciences,91400 ORSAY 负责人姓名:Angelina ANGELOVA 博士 电子邮箱:angelina.angelova@universite-paris-saclay.fr 上课时间:2025 年 1 月 20 日 - 7 月 18 日 主题名称:液晶脂质纳米粒子中的控制药物释放用于神经保护 - 科学背景 除其他神经退行性疾病外,阿尔茨海默病和帕金森病还给全球约 10 亿人带来医疗和社会经济负担,每年导致 680 万人死亡。这些疾病的特征是神经元的逐渐损失导致认知、感觉、行为和运动神经系统功能障碍。氧化应激会导致活性氧 (ROS) 的产生和自由基的形成,这是这些疾病的共同特征。这可能导致神经退化,并可能导致中枢神经系统斑块的形成。具有内部液晶组织的脂质基纳米颗粒 (LNP) 是一种新的药物输送策略,可调节细胞和组织中的 ROS 水平,从而实现神经保护和神经再生。溶致性脂质基纳米颗粒(立方体、六角体和脂质体)是抗氧化剂化合物输送的理想选择,因为它们的结构有利于增强包封效果和对活性药物成分的包封。立方体、脂质体和六角体类型的纳米载体可以提高药物的生物利用度并保护不稳定的药物分子,这些分子可以是亲水性或疏水性物质。在具有神经保护特性的其他植物化学物质中,槲皮素是一种溶解度低的多功能化合物,需要输送载体才能到达目标作用位点。液晶脂质纳米颗粒 (LCNP) 的控制释放是纳米医学研究的一个新兴领域。目前正在扩展实验以提供数据,这些数据可用于对此类受控药物输送系统中的药物释放进行动力学建模(例如,使用零级模型、一级模型、Higuchi、Korsmeyer-Peppas、Hixson-Crowell、Baker-Lonsdale、Weibull 或 Hopfenberg 模型)。
摘要:受控的药物输送系统确保在吸收位点保持一致的药物浓度,从而在治疗范围内维持血浆水平。这不仅减少了副作用,而且减少了频繁给药的需求。与传统剂型相比,持续释放(SR)口服产品具有明显的优势。他们优化了药物特性,将给药频率最小化到一个每天剂量有效地管理治疗需求的程度。这种方法确保血浆浓度均匀,最大化药物效用,同时最大程度地减少局部和全身副作用。使用最小的药物数量在最短的时间内加速了治愈或控制条件,从而促进了更大的患者依从性。受控药物输送系统的开发旨在解决与传统药物输送方法相关的挑战。这些系统在指定的持续时间内以当地或系统地以预定义的速率管理该药物。受控的释放配方降低了必要的每日给药频率。在过去的二十年中,受控药物输送系统取得了重大进展,从宏观尺度到纳米级,并结合了智能目标交付策略。受控或修改的释放药物输送系统可以在延长持续时间内逐步施用药物。这些系统涵盖了各种剂型,包括口服和透皮使用的剂型,以及可注射和可植入的选项。但是,它们代表了不同的交付过程。尽管口服途径通常是药物管理的首选方法,但某些分子由于溶解度或渗透率问题而面临诸如低生物利用度之类的挑战。关键字:受控药物输送系统,透皮药物输送系统,影响CDD的因素,CDD中的聚合物。简介:受控药物输送系统在增强治疗功效的同时最小化副作用方面起着关键作用。这些系统允许精确调节药物释放,从而确保目标部位的最佳药物浓度。已采用各种技术,例如微粒,纳米颗粒,脂质体和水凝胶来实现受控的药物输送。研究人员探索了智能聚合物和响应材料的整合,从而响应特定的刺激而触发了释放。受控的药物输送,从而可以预先设计的散装材料释放。术语受控和持续的释放有时会互换使用,引起混乱。持续的释放涉及在延长时间内输送药物的任何剂型,表明治疗性控制,无论是时间,空间还是两者兼而有之。持续的释放系统通常无法实现零级释放,而是旨在通过缓慢的一阶药物提供模仿它。受控药物输送的主要目标是通过创新的药物输送系统或分子结构和生理参数的修饰来修改活性物质的药代动力学和药效学。