2020 年 1 月 7 日,星期二,太空中的印度食物:DRDO 为 Gaganyaan 宇航员准备的菜单 Gaganyaan 宇航员将享用适合太空条件的印度食物。作者:Rekha Dixit 早餐是 Idli 或 upma。午餐可以选择鸡肉比尔亚尼饭或素食印度饭,配以木豆和什锦蔬菜。晚餐来份鸡肉咖喱和印度薄饼怎么样?Sooji halwa 是不错的甜点,当您感到饥饿时,可以吃一根能量棒。抱歉,这是一次无烟无酒精的航班,但您可以自备咖啡或茶,或者选择果汁。所有这些,甚至更多,都可以通过 ISRO 的 Gaganyaan 计划在太空中获得。Gaganyaan 是印度的首次载人航天飞行。该航天飞机计划于 2022 年前起飞,将为先驱宇航员提供由国防研究发展组织 (DRDO) 提供的印度美食,该组织负责为为期一周的飞行准备食物。在 DRDO 忙于设计菜单的同时,其位于迈索尔的国防食品研究实验室 (DFRL) 正在改进一系列包装食品,为执行严酷任务的士兵制作。一份包含印度各地美食的二十多种食品清单正在制定中。 “我们希望在三次飞行中的第一次飞行中准备好一组初始食品,”DFRL 主任 D. Semwal 说道。Gaganyaan 任务包括三次飞行;前两次将是无人驾驶的,只有第三次将有两名或三名宇航员组成的人类机组人员。印度空军的四名试飞员已从最初的十名候选名单中选出,接受飞行的进一步培训。虽然有各种各样的太空食品可供选择,因为人类已经航行了六十多年,许多人已经在国际空间站等空间站上呆了几个月,但 Gaganyaan 是一个平台,可以将印度美食以印度的方式改编为太空飞行。“我们的食物保持温和的调味,不过对于那些想要的人来说,我们会提供额外的香料包,”Semwal 在班加罗尔第 107 届印度科学大会的印度骄傲展览上说道。食品包将是干燥的,需要通过加水来重新溶解。在太空舱的零重力环境中,必须在密闭空间内添加水,这样水滴才不会漂浮在飞船各处。入围的食品都经过了精心挑选。例如,面包就不在名单上,因为它容易碎,而面包屑可能会让人烦恼。
• 制造按比例缩小的机电基元:为测试组装和构造概念,在实验室中构建了约 1:50 的缩小实验硬件平台。最受探索的几何形状之一“巴基球”提供了高效的表面积与体积比,接近球体。对于太空应用,考虑到将预制表面覆层发射到轨道的成本高昂,最好在给定表面积下最大化体积。这些结构基元允许快速进行原型设计、迭代,以及通过几何和磁性对结构粘合的物理和机电特性进行评估。具体而言,瓦片之间的二面角粘合角为巴基球或其他封闭形状建立了适当的壳几何形状,磁体行为由计算代码和每个瓦片中的电力电子设备控制。主要构建两种类型的基元:可自组装成空心结构的壳瓦片,例如巴基球的五边形和六边形瓦片(图 1);和细胞节点(即准六面体)可自组装成填充空间的设计,例如截角八面体线的堆叠。我们使用了多种 3D 打印技术来制造外壳,为了获得更精确的公差,我们优先使用光固化光聚合物打印机。这些瓷砖通过电池和超级电容器组合供电,在我们最新的国际空间站 (ISS) 测试原型上,其规格为 2 到 3 秒内产生 20 W 脉冲(图 2)。一套定制的电子元件(包括传感器、LED、中央处理器和数据存储器)安装在预制的 PCB(印刷电路板)上,这些 PCB 运行 Python 和 C++ 中的自组装算法代码。 • 微重力测试:这些微型平台随后在微重力环境中进行测试,测试范围从抛物线“零重力”飞行中反复出现的 15-20 秒失重期,到亚轨道火箭实验室内三分钟的漂浮,再到国际空间站上为期多天的轨道任务(图 3)。当被释放到这些微重力环境中漂浮时,瓷砖会记录传感器数据,摄像头会捕捉镜头进行分析,为下一系列迭代原型提供信息。这些微重力测试对于全面了解在优化的瓷砖质量与磁场强度比下的自组装行为至关重要。对于国际空间站任务,要么使用密闭实验箱进行纯自主轨道测试,瓷砖必须在其中自行启动,要么在宇航员看管的实验中将瓷砖释放到开放过道中,以获得更大的测试空间。 3 为了补充小规模硬件测试,我们使用了一套机器人模拟软件(特别是 Cyberbotics 的 WeBots)来生成人类居住规模的轨道上自组装行为的数学严格模型。
植物工厂可以定义为园艺温室或自动化系统设施,通过控制环境条件,例如光,温度,湿度,CO 2和养分溶液。最近,在工厂工厂中,先进的技术已被用来自动调整和控制增长环境。现代工厂工厂技术的主要好处是安全,保障和稳定的食品供应。他们可以解决减少农业员工减少的问题,由于全球变暖的异常天气以及由于人口过多而导致的粮食短缺。因此,可以预期农业业务的进步。植物工厂可以将基于人造照明的完全封闭的系统和基于天然阳光的系统广泛归类。封闭的植物工厂中使用的主要培养方法是水培法,而天然阳光系统可以同时使用土壤和水培技术。基于阳光的植物工厂可以独自使用自然阳光,或者可以使用自然的阳光和人造光的组合。在一个封闭式工厂工厂中,运营成本很高。这种方法不适合种植大量水果和蔬菜,但叶蔬菜适用。小空间,建筑物内部或以前的工业工厂,是植物生长系统的足够关联。如果环境控制是最佳的,则可以增加植物的营养价值。这种用于重新搜索的温室称为phytotron。另一方面,与封闭系统相比,基于阳光的植物工厂的运行成本较低。它们更适合种植更大的水果和蔬菜,但是由于气候变化不可预测,环境控制很困难。植物工厂的历史和典型的过渡如下:1949年,帕萨迪纳加利福尼亚理工学院的Earhart植物研究实验室开发了第一个温室,控制着照明,温度,湿度,湿度,CO 2,风,雨,雨水和雾气。在1950年代在日本,植物体安装在大学,生物学和农业研究机构中。1952年,国家遗传学研究所的环境监管温室成为该国的第一个植物。在1957年,东京大学的农业教师安装了能够控制温度,湿度和人工照明的生物环境控制设施(Biotron)。它不仅是植物植物,而且是生物学研究目的的动物和昆虫环境控制实验室。在1950年代和60年代,BIOS-3 CELSS(受控生态生命支持系统)始于其他国家的太空发展计划。1967年,威斯康星大学还建立了一个名为Biotron的设施。在1970年代初期,日本有限公司(目前是该协会的名誉会员(日本农业,生物学和环境工程师和科学家学会),Takatsuji Masaki)是世界上第一个开始使用工厂工厂技术进行测试的人。在1980年代在美国,使用自然阳光的大型自动化植物工厂变得广泛。同时,在荷兰,使用人造光作为种植花,观赏植物和幼苗的植物生产工厂也变得突出。在日本,水疗中心(语言植物方法)生物特征培养技术是由Ehime University教授Hashimoto Yasushi提出的。1990年,提出了国际空间站内的一家工厂工厂,对零重力与植物生长之间关系的研究始于NASA开发的沙拉机。在日本,目的是提高生产效率。由于这种重点,已经开发了基于荧光照明的多层培养系统,有效地利用面积较密集的植物布局以及漂浮在洪水床上的栽培面板。机器人还被引入植物工厂,在该工厂中,开始并继续进行播种,收获和包装的测试。2008年,启动了一项日本国家政策,称为“广泛工厂工厂使用的经济增长战略”,以促进完全控制的环境和太阳能植物工厂企业的传播。 在2009年第三次繁荣时期,三菱研究所公司2012年3月的调查显示,建立了各种工厂工厂,并且已经开始运营。 106个工厂仅使用人造光,21使用人工和自然光的组合,而84个独有的自然阳光。2008年,启动了一项日本国家政策,称为“广泛工厂工厂使用的经济增长战略”,以促进完全控制的环境和太阳能植物工厂企业的传播。在2009年第三次繁荣时期,三菱研究所公司2012年3月的调查显示,建立了各种工厂工厂,并且已经开始运营。106个工厂仅使用人造光,21使用人工和自然光的组合,而84个独有的自然阳光。从那时起,从耕种到收获的自动化技术管理元素的快速发展就一直在环境控制开始。到目前为止,据推测,只有机器才在植物工厂内部移动。但是,最近还分析了植物移动系统的土壤培养物。例如,大阪县大学的多阶段生菜培养系统机器人或国家农业和食品研究组织的草莓收获机器人。