有几种类型的天线,包括:1.Dipole天线:它们是最常见的天线类型,广泛用于广播和电视广播中。它们由两个对称排列的导电元件组成。2.点天线:它们通常用于无线通信系统,例如Wi-Fi和蓝牙。它们平坦而薄,适合空间有限的应用。3.Yagi-uda天线:它们是定向天线,通常用于远程通信。它们由以特定模式排列的驱动元素和一个或多个寄生元素组成。4.副天赋天线:它们是高度方向性的,用于卫星通信和雷达系统。它们由抛物线反射器和位于反射器焦点的饲料天线组成。
本文提出了一种数字模型,用于确定机场陆侧区域内移动物体的允许轨迹。该模型可用于评估自动相关监视系统提供的信息的可靠性,以及过滤虚假目标。虚假目标可能是由于监视系统从大型物体发射的无线电信号反射,以及由于主动干扰或欺骗攻击而产生的。所开发的模型对于评估具有平均交通复杂程度的机场自动相关监视广播系统提供的信息的可靠性特别重要,因为与多点定位系统或以 S 模式运行的二次监视雷达系统相比,它在监视方面允许更简单的解决方案。
公众意识和行业对进一步小型化此类传感器封装的需求是汽车行业不断努力将此类设备集成到车身(如保险杠和前照灯)中而不是将它们连接起来(例如,对于激光雷达设备,则将其连接在车顶)的主要驱动力。安全(对于驾驶员和其他人来说)是汽车行业最重要的关键方面。因此,高级驾驶辅助系统 (ADAS) 以及自动驾驶汽车需要高价值和高性能的雷达和激光雷达系统。目前的瓶颈是此类传感器设备的尺寸相对较大、重量较重以及功耗较大。由于这些因素在汽车中受到严格限制,因此迫切需要进一步小型化并提高功能性和高效利用资源。
1.军用雷达:作战系统主要视频传感器 根据扫描控制方式不同,雷达站可分为机械扫描雷达、电子扫描雷达、频率扫描雷达、相控阵雷达(相控阵雷达)和合成孔径雷达(特别行政区)。雷达作为现代战争作战系统的主要视频传感器,负责对目标进行全天候精确侦察和实时监控;探测和跟踪可能对军事基础设施造成严重损害的武器,例如弹道导弹和巡航导弹;各种隐藏目标的检测和识别;确定失败的结果并识别目标、导弹制导和武器火力控制。2.世界军用雷达发展趋势:技术多元化、市场稳定、产业集中 雷达技术正处于发展中期阶段。整个中间阶段是基于相控阵雷达、合成孔径雷达和脉冲多普勒雷达三个主要系统的起源、发展、完善、集成和智能化。雷达的发展包括三个方向——载体和系统的多样化以及宽频率范围(其扩展)。关于载体(安装地点),随着雷达技术向小型化、集成化方向发展,雷达的使用不再局限于地面、机载和舰载载体,而是越来越多地应用于无人机和卫星;说到波段,随着新波段(如毫米波雷达)的发现,雷达的波长不断扩大。纵观整个雷达系统,传统的脉冲多普勒雷达(PD - Pulse-Doppler)机械扫描模式正逐渐淡出背景,取而代之的是相控电子扫描阵列雷达和合成孔径雷达(SAR)。将成为主要发展方向。雷达系统最终将统一为一个网络,其特征还包括:多功能集成、数字化和分布式。短期内,雷达发展的重点将是天线技术、成像技术和射程扩展,即相控阵雷达、SA雷达和毫米波雷达。
雷达是一种物体检测系统,它可以识别目标并帮助生成目标的各种特征。为了测试雷达系统,需要进行多次现场测试。这非常昂贵,需要使用大量资源,这是一个巨大的缺点。为了降低这种复杂性,雷达目标生成器变得非常关键。本文提出了一种用于机载目标的雷达目标生成器。所提出的系统降低了成本,因为它是一个模拟环境,从而为用户提供了可视化场景的机会。它还可以动态生成目标的各种参数,从而节省大量时间。关键词:机载目标、方位角、仰角、雷达、雷达数据处理器 ________________________________________________________________________________________________________
• 最好还具备雷达系统知识,但这不是必需的 • 监督开发硬件向生产过渡的经验,包括环境测试、资格测试和设计认证 • 有验证系统级功能的经验,最好查看 SW/FW 集成和验证 • 熟悉高数据带宽系统的实时数字信号处理 • 良好的沟通技巧,能够为外部客户提供高质量的书面报告和演示文稿 • 参与概念开发所有阶段的设计审查,以评估设计成熟度 • 在高可靠性设计环境(航空航天、航天、国防或类似环境)中工作的经验将非常有利 • 了解航天工业,包括相关标准和要求(ECSS 等)
本文提出了一种数字模型,用于确定机场陆侧区域内移动物体的允许轨迹。该模型可用于评估自动相关监视系统提供的信息的可靠性,以及过滤虚假目标。虚假目标可能是由于监视系统发射的无线电信号从大型物体反射,以及由于主动干扰或欺骗攻击而产生的。所开发的模型对于评估具有中等交通复杂程度的机场自动相关监视广播系统提供的信息的可靠性特别重要,因为与多点定位系统或以 S 模式运行的二次监视雷达系统相比,它允许更简单的监视解决方案。
关键词:移动激光雷达,图像,交通标志,胶囊卷积网络,高阶胶囊特征 摘要:本文提出了一种从移动激光雷达数据和数字图像中检测和识别交通标志的方法,用于智能交通相关应用。交通标志检测和识别方法包括两个步骤:首先从移动激光雷达数据中提取交通标志兴趣区域。接下来,通过卷积胶囊网络模型从多传感器移动激光雷达系统同时采集的数字图像中识别交通标志。实验结果表明,所提出的方法在检测三维点云中的交通标志和识别二维图像上的交通标志方面都获得了有希望、可靠和高性能。
1. 引言由于高速微处理器和快速切换技术的进步,超宽带 (UWB) 已成为经济可行的短距离、高性价比通信技术。雷达系统、无线个人局域网、定位、消费电子产品和医疗电子产品只是早期的一些应用。从那时起,人们已经对 UWB 电磁学、组件和系统工程有了完整的了解。美国联邦通信委员会 (FCC) 是 2002 年发布 UWB 指导意见的主要组织,授权在 3.1–10.6 GHz 范围内未经许可使用分配的频谱。尽管如此,允许的功率水平设置得非常低,以避免与在此频率范围内运行的其他技术(如 Wi-Fi 和蓝牙 [1])发生干扰。图 1 描绘了通常的无线电传输功率谱密度与
使用激光束开发通信和雷达系统对有效检测光学频率信号以及利用此类信号的通道性质的兴趣。(Gordon,1962,1964; Jelsma and Bolgiano,1965; Takahasi,1965; Lebedev and Levitin,1966)。光信号检测器的可靠性不仅受到信号并在检测器中生成的随机噪声的限制,而且还受信号本身的量子性质的限制,该噪声本身的量子性质会引入检测过程中的附加随机元素。通过信号检测的统计理论划定了对普通雷达和通信系统中信号可检测性的基本局限性(Peter- Soil等。1954; Middleton和Van Meter,1955a;米德尔顿,1960年,1965年),