会议演讲SPIE天文仪器,日本横滨(2024)线强度映射,伊利诺伊州乌尔巴纳 - 冠军(2024年),使用宇宙背景和低表面亮度宇宙,ASPEN,CO(2024),CO(2024)当前和将来4月会议,纽约,纽约,纽约(2022)18次低温探测器,意大利米兰(2019)SPIE天文学仪器,德克萨斯州奥斯汀(2018)CMB-S4合作会议,马萨诸塞州波士顿(2017)17th低温探测器探测器,日本库鲁姆,日本库鲁姆(2017)Spie Astronomical Instrumination,Edinonolonolication,Edinonologine Kingdom,United Kinginburgh,2016年(2016)
我们通过所有感官感知世界。原因有很多,对吧?部分原因是视觉界面性价比最高。视觉界面很容易实现,人们已经习惯了视觉,视觉界面也是多年来不断发展的。另外部分原因是惯性,人们会固守过去行之有效的方法,这是一种基本的人性。如果目前所做的事情已经行之有效,人们就会拒绝尝试新事物。这让我想到了我的最后一个立场,即立场 5,它认为“行之有效”已经不再适用。我们的可视化需要采用新的生物启发方法来传达信息,基于大脑如何使用多感官输入和输出,我们已经讨论过的事情,这也是经常被讨论的事情,很多人都会这么说,而且有很多已知的好处。我们已经讨论过一些,还有很多其他的,但现实是,在已经完成的工作和这些可视化技术如何发展方面几乎没有任何实际进展。当我写这篇文章时,这让我想起了我的祖母。当我含糊其辞或不做某事时,祖母会告诉我,“尼基!做你自己的事,否则就滚蛋吧!”我想她不会喜欢我代表她的声音。不管怎样,这是一个很好的观点。我正在听,奶奶。这就是我试图发表这种演讲并传播信息的原因。可视化领域有一些非常有前途的工具,它们正在做我所说的事情,特别是增强现实和虚拟现实。这里有很多变体。你可以用很多不同的方式来做到这一点。该技术可以使用显示器、头戴式显示器、洞穴,还可以使用 AR 眼镜,但该技术在可视化方面的总体优势在于它们基于 3D 模拟,具有高度沉浸感,允许 3D(三维用户移动和交互),并且支持建模和模拟任何类型的多维数据。这真的是一件大事,我对这项技术特别兴奋,因为它终于从纯视觉界面转向使用多模态信息,这很重要,因为从历史上看,虚拟现实是视觉现实和视觉模拟的同义词。如果你身处 VR 世界,你得到的就是视觉的东西,但现在这种情况正在改变,例如,我们的 VR 系统开始使用空间化音频,因此你可以在 3D 空间中听到来自周围的声音,它们使用触摸和触觉,它们使用温度或虚拟温度变化。他们甚至在模拟中使用味觉和嗅觉,所以这很重要,很有益处。这意味着,通过使用这些提示,你不仅可以增加 VR 的包容性,让那些看不见或无法使用它的人也能使用它,而且你还可以大大提高真实感和对每个人的影响,因为我们现在终于可以模拟大脑如何在这些多模式界面中接收和处理信息。最重要的是,VR 和 AR 都已在许多不同领域用于一些非常出色的可视化,我认为,人们越来越关注超越视觉界面,这对未来的可视化来说非常有希望。我认为这是特别重要的事情。好的,我将通过快速讨论我实验室中基于多模式、生物启发可视化的一项研究来结束,我想谈论很多项目,但我有时间只谈一个,我做这个是因为我认为它特别重要。因此,目前,仅在美国就有超过 1200 万人患有某种形式的未矫正视力丧失,而全世界这一数字则激增至 2.8 亿人,因此我们谈论的不是一个很小的群体,而是——其中大多数人在获取视觉图形方面存在很大困难,因为目前没有简单的方法可以非视觉地制作或传达图形内容。所以我们的目标是说,“好吧,我们如何才能开发新的多模式可视化”技术,基于“我们正在讨论的很多东西,可以用于所有类型的 STEM 领域?”因此,我们的解决方案使用智能设备的触摸屏,因此手机和平板电脑可以而全球有 2.8 亿人,所以我们说的不是一个很小的群体,而是——大多数人很难理解视觉图形,因为目前没有简单的方法可以非视觉地制作或传达图形内容。所以我们的目标是说,“好吧,我们如何才能开发新的多模式可视化”技术,基于“我们正在讨论的很多东西,可以用于所有类型的 STEM 领域?”所以我们的解决方案使用智能设备的触摸屏,因此手机和平板电脑而全球有 2.8 亿人,所以我们说的不是一个很小的群体,而是——大多数人很难理解视觉图形,因为目前没有简单的方法可以非视觉地制作或传达图形内容。所以我们的目标是说,“好吧,我们如何才能开发新的多模式可视化”技术,基于“我们正在讨论的很多东西,可以用于所有类型的 STEM 领域?”所以我们的解决方案使用智能设备的触摸屏,因此手机和平板电脑
学习成果 完成本模块后,学生将了解: - 计算神经科学的基本概念、理论基础和最常用的模型 - 相关的基本神经生物学知识和相关的理论方法以及这些方法迄今为止得出的结论 - 不同模型的优势和局限性 - 如何适当地选择用于建模神经系统的理论方法 - 如何在考虑神经生物学发现的同时应用这些方法 - 如何批判性地评估获得的结果。 - 如何使模型适应新问题以及开发新的神经系统模型。 内容 本模块提供有关神经系统组成部分及其建模的基本知识,包括有关神经元和神经回路内信息处理的基本神经生物学概念和模型。具体主题包括: - 神经元的电特性(能斯特方程、戈德曼方程、戈德曼-霍奇金-卡兹电流方程、膜方程) - 霍奇金-赫胥黎模型(电压依赖性电导、门控变量、瞬态和持续电导、动作电位产生) - 通道模型(状态图、随机动力学) - 突触模型(化学和电突触) - 单室神经元模型(整合-激发、基于电导) - 树突和轴突模型(电缆理论、拉尔模型、多室模型、动作电位传播) - 突触可塑性和学习模型(释放概率、短期抑制和促进、长期可塑性、赫布规则、基于时间的可塑性规则、监督/无监督和强化学习) - 网络模型(前馈和循环、兴奋-抑制、发放率和随机、联想记忆) -神经元和网络模型的相空间分析(线性稳定性分析、相图、分岔理论模块组件
内华达州克里奇空军基地 ........................ 任务支援设施:规划和设计 ................. I, 900,000 内华达州克里奇空军基地 ........ . ……… 战士体能训练中心:规划和设计 ............. 2,200,000 海里科特兰空军基地 ....... . ……… PJ/CRO 城市训练综合体:规划和设计 ............. 810,000 海里霍洛曼空军基地 ...................... 室内目标翻转设施:规划和设计 ............. 2,340,000 空间快速能力办公室专用设施: 海里科特兰空军基地 ...................... 规划和设计 ............................................................. 5,280,000 海里坎农空军基地 ........ . …………… 192 床位宿舍:规划和设计 ............................................. 5,568,000 海里科特兰空军基地 ............. ......... 怀俄明门项目:完成成本 ...................... ... 5,600,000 海里 坎农空军基地 ........................ 部署处理中心:规划和设计 ................ 5,976,000 海里 I 洛洛曼空军基地 ................ ....... MQ-9 正式训练单位作战设施 ...................... 40,000,000 石油 赖特-帕特森空军基地 ............ 儿童发展中心。 ........................................ . ... ..... 24,000,000 南卡罗来纳州查尔斯顿联合基地 ............. 飞行林肯支持设施 ........................................ 29,000,000 南卡罗来纳州查尔斯顿联合基地 ............. 消防和救援站 ................ . ........................................ 30,000,000 德克萨斯州圣安东尼奥联合基地拉克兰
状态:完整和启动状态详细信息:13芝加哥社区合作伙伴和政府机构从联邦通信委员会(FCC)获得了超过60万美元的负担得起的连接计划赠款资金,以在其社区中进行ACP宣传和入学率。该城市还通过美国连接军的领导者授予了数字导航员,后者正在图书馆分支机构和整个城市的其他地点进行ACP外展和入学。该计划是与伊利诺伊州宽带实验室和宽带办公室的合作伙伴关系。这座城市正在通过社交媒体,传单和通过各个城市部门的社交媒体,传单和交叉促销的全市运动来扩大这一当地支持。数字股权联盟成员还主张通过向民选官员推广来扩展ACP资金。
凯西·霍尔金 霍普 霍普 唐·霍瓦蒂奇 玛丽莎·伊巴涅斯-法雷尔 格兰达·杰克逊 吉塔·杰尚卡尔 史蒂文·贾维 卢安娜·贾雷吉 克里斯汀·杰弗里 文森特·希门尼斯 安妮特·约翰逊 维多利亚·琼斯 詹妮弗·琼斯 尼塔·坎萨拉 迈克·卡里姆 霍普·考夫曼 米切尔·考克 纳夫乔特·考尔 洛林·金德雷德 罗伯特·金德隆 阿曼达·奈特 罗伯特·诺克斯 莎拉·诺克斯 科里·科恩 拉塞尔·克拉夫特 普拉西塔·克里希南 特蕾莎·库安 维沙尔·雷迪·库南 琳达·拉菲蒂 道格拉斯·劳 特勒 玛丽亚·莱穆斯·加西亚 杰米·莱斯利 迪娜·洛佩兹 卢尔德·洛佩兹 吉蒂·卢德西里肖蒂 珍妮特·鲁道夫 托尼·M·约翰·马查多 莫妮卡·马奥尼 佩奇·加西亚 芭芭拉·马力诺 卡特琳娜·玛吉 黛安·马丁 阿曼多·马丁内斯 迭戈·马丁内斯 托尼·马丁内斯 娜塔莉·马萨乔 莱斯利·马塔莫罗斯 林恩·麦考尔
凝结材料和冷凝物质物理中心(IFIMAC),马德里大学,马德里大学28049大学,西班牙B物理学和天文学系,奥尔胡斯大学,阿尔胡斯大学,阿尔胡斯C 80 0,丹麦·塞斯纳(Dev) 28049,西班牙D物理研究所,里约热内卢大学,邮政信箱68528,里约热内卢,RJ 21941-972,巴西兼物理系,埃斯皮里托·桑托大学联邦大学,维多利亚大学,维多利亚大学,ES 29075-910,29075-910无机化学,化学科学高级研究所(IADCHEM)和凝分物理学中心(IFIMAC),马德里28049年,马德里28049,HALBA Synchrotron,La llum Carrer 2-26凝结材料和冷凝物质物理中心(IFIMAC),马德里大学,马德里大学28049大学,西班牙B物理学和天文学系,奥尔胡斯大学,阿尔胡斯大学,阿尔胡斯C 80 0,丹麦·塞斯纳(Dev) 28049,西班牙D物理研究所,里约热内卢大学,邮政信箱68528,里约热内卢,RJ 21941-972,巴西兼物理系,埃斯皮里托·桑托大学联邦大学,维多利亚大学,维多利亚大学,ES 29075-910,29075-910无机化学,化学科学高级研究所(IADCHEM)和凝分物理学中心(IFIMAC),马德里28049年,马德里28049,HALBA Synchrotron,La llum Carrer 2-26
海伍德 安东尼 J III 亨德里克斯 弗雷德·亚瑟三世 亨利·肖恩 迈克尔·斯普林 赫特伯格 蒂莫西 J·辛克尔 凯瑟琳·汤普森·辛森 德尔塔·蒙特雷尔 霍巴特 理查德 T·霍库拉 萨迪斯 M·霍尔曼 丽贝卡·罗斯·洪德鲁姆 本杰明·奥拉夫 乔兹·胡克 迈克尔·乔恩·霍普金斯 罗伯特·巴里·霍恩 约翰·哈里森·赫伊津加 克里斯托弗·阿勒·休姆斯 维吉尔·菲利普·亨特利 雅各布·R·英格拉姆 托尼·勒马里昂 艾森 查尔斯·罗伯特三世 贾尼吉安 艾伦·迈克尔·杰特 安德鲁·W·琼斯 基思·马修·琼斯 斯蒂维·路易斯二世 乔丹·西尔维娅 艾丽莎·凯恩 蒂莫西·安德鲁卡明斯基·克里斯托弗·L·卡姆·威廉·G·凯利·丹尼尔·帕特里克·凯利·瑞安·帕特里克·凯森尼奇·约瑟夫·R·科沃奇·贾斯汀·爱德华·克兰兹·朱莉娅·林恩·克雷森·杰森·威廉·拉卡曼·迈克尔·R·兰格雷克·约翰·T·雷德福德·杰弗里·沃伦·李·希瑟·I·伦奇·尼古拉斯·约翰里奥·乔纳森·E·刘易斯 约瑟夫·C·刘易斯 凯利·安·伍兹 洛埃拉·威廉·亚当 卢·所罗门 钱利·卢本诺夫 伊万·古奥尔吉耶夫