① 输入发行者・授权者的信息。 ② 在传达事项中,请勾选成分信息 ※ 和合规性评估信息。 ※本公司要求FMD (所有成分) 时,请在FMD上打勾后提供。 ③ 请勾选SCIP信息的所有项目。
[1] Du M,Peng X,Zhang H等。地质,环境和生活在世界海洋最深的地方。创新(Camb),2021,2:100109 [2] Stewart HA,Jamieson AJ。HADAL沟渠的栖息地异质性:未来研究的考虑和影响。Prog Oceanogr,2018,161:47-65 [3] Jamieson AJ,Fujii T,市长DJ等。Hadal Trenches:地球上最深的地方的生态。趋势Ecol Evol,2010,25:190-7 [4] Jamieson A.Hadal区域:最深的海洋中的生命[M]。剑桥:剑桥大学出版社,2015年[5] Glud RN,WenzhöferF,Middelboe M等。地球上最深的海洋沟中的沉积物中的微生物碳更换率很高。nat Geosci,2013,6:284-8 [6] Glud RN,Berg P,Thamdrup B等。HADAL沟渠是深海早期成岩作用的动态热点。社区地球环境,2021,2:21 [7]WenzhöferF,Oguri K,Middelboe M等。底栖碳矿化中的矿物质矿化:原位评估2微量精细的测量值。深海Res 1 Oceanog Res Pap,2016,116:276-86 [8] Nunoura T,Nishizawa M,Kikuchi T等。分子生物学和同位素生物地球化学预后,硝化驱动的动态微生物氮循环在hospelagic沉积物中。环境微生物,2013,15:3087-107 [9] Nunoura T,Takaki Y,Hirai M等。HADAL生物圈:对地球上最深海洋中微生物生态系统的洞察力。 Proc Natl Acad Sci u S A,2015,112:E1230-6 [10] Thamdrup B,Schauberger C,Larsen M等。HADAL生物圈:对地球上最深海洋中微生物生态系统的洞察力。Proc Natl Acad Sci u S A,2015,112:E1230-6 [10] Thamdrup B,Schauberger C,Larsen M等。Anammox细菌驱动Hadal沟槽中的固定氮损失。Proc Natl Acad Sci u S A,2021,118:E2104529118 [11] Liu S,Peng X. Hadal环境中的有机物成分:来自Mariana Trench Sediments的孔隙水地球化学的见解。深海Res 1 Oceanogr Res Pap,2019,147:22-31 [12] Cui G,Li J,Gao Z等。在挑战者深处的深渊和哈达尔沉积物中微生物群落的空间变化。peerj,2019,7:e6961 [13] Peoples LM,Grammatopoulou E,Pombrol M等。从两个地理分离的哈达尔沟中的沉积物中的微生物群落多样性。前微生物,2019,10:347 [14] Li Y,Cao W,Wang Y等。在玛丽安娜南部沟渠沉积物中的微生物多样性。J Oceanol Limnol,2019,37:1024-9 [15] Nunoura T,Nishizawa M,Hirai M等。从挑战者深处的沉积物中的微生物多样性,玛丽安娜沟。Microbes Environ,2018,33:186-94 [16] Jian H,Yi Y,Wang J等。居住在地球上最深海洋的病毒的多样性和分布。ISME J,2021,15:3094-110 [17] Hiraoka S,Hirai M,Matsui Y等。 微生物群落和对的反式沉积物的地球化学分析ISME J,2021,15:3094-110 [17] Hiraoka S,Hirai M,Matsui Y等。微生物群落和对
2019年12月Rev.0.9 1/8©2019 SDC Microelectronics Co.,Ltd。www.sdc-semi.com0.9 1/8©2019 SDC Microelectronics Co.,Ltd。www.sdc-semi.com
STAR ( Spliced Transcripts Alignment to a Reference )是用于将 RNA-seq 读取数据与 参考基因组序列进行高度准确和超快速的剪接感知( splice aware ) 比对的工具。注意, STAR 是一个专门针对 RNA-seq 数据映射的比对工具,这意味着不能用于比对 DNA 数据。与 其它的 RNA-seq 比对工具相比,其具有较高的准确率,映射速度较其他比对软件高 50 多 倍。 STAR 在识别经典和非经典剪接位点方面具有很高的精确性,还可以检测到嵌合(融 合)转录本。除了映射短读取数据(例如 ≤ 200 bp ), STAR 还可以准确地映射长读取数据 (例如来自 PacBio 或 Ion Torrent 的数 Kbp 读取数据)。 STAR 在变异检测( SNP 和 INDEL ) 方面具有更好的灵敏度,因此, STAR 被用于 GATK 最佳实践工作流程,用于从 RNA-seq 数据 中识别短变异。
突变或遗传工程,及其涉及的 DNA 或 RNA, 载体 ( 如质粒 ) 或其分理、制备 或纯化;所使用的宿主 Mutation or genetic engineering; DNA or RNA concerning genetic engi- neering, vectors, e. g. plasmids, or their isolation, preparation or purifica- tion; Use of hosts therefor 酶;酶原;其组合物、制备、活化、抑制、分离或纯化酶的方法 Enzymes, e. g. ligases; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating, or purifying enzymes 微生物本身,如原生动物;及其组合物;繁殖、维持或保藏微生物或其组 合物的方法;制备或分离含有一种微生物的组合物的方法;及其培养基 Microorganisms, e.g. protozoa; Compositions thereof; Processes of propa- gating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorgan- ism; Culture media therefor 具有多于 20 个氨基酸的肽;促胃液素;生长激素释放抑制因子;促黑激 素;其衍生物 Peptides having more than 20 amino acids; Gastrins; Somatostatins; Mela- notropins; Derivatives thereof 饲养或养殖其他类不包含的动物;动物新品种 Rearing or breeding animals, not otherwise provided for; New breeds of animals 包含酶、核酸或微生物的测定或检验方法;其组合物;这种组合物的测定方法 Measuring or testing processes involving enzymes, nucleic acids or microor- ganisms; Compositions therefor; Processes of preparing such compositions
尽管过去几十年来信息技术、微电子、人工传感和信息处理领域取得了令人瞩目的进步,但实际系统在处理现实任务时仍然远不如生物系统有效。这种分析导致了神经形态工程领域的出现,特别是基于事件的传感,旨在构建基于硅的传感和计算设备,模仿生物系统获取和处理信息的方式。与传统图像传感器不同,EB 传感器不对所有像素使用通用采样率(称为帧速率),而是每个像素连续跟踪入射光量并在变化时异步采样信号。这种获取稀疏数据的高效方式、高时间分辨率以及对不受控制的照明条件的鲁棒性(具有高动态范围)是 EB 传感过程的特点,使 EB 成像对众多应用具有吸引力,例如工业自动化、过程监控、监控、物联网、AR/VR、汽车和移动环境。
输入功率因数几乎等于 1(负载为 20% 时 PF = 0.99)和低谐波失真(THD ‹3%)可确保对网络的影响最小且能效高,从而降低能源管理成本。功率因数偏离单位值越大,电网吸收的无功功率就越大,运营商因此会提高电价。功率因数的校正还涉及减少任何上游发电机的过大尺寸,此前上游发电机的功率必须超过 UPS 的标称功率至少 30%,从而可以在构建连续性系统时进一步节省成本。精心控制网络吸收的电流可让您获得非常低的谐波输入电流失真水平(THD ‹3%)。电源线上的非线性负载引起的谐波失真决定了系统中存在的任何电流都高于预期,并且包含谐波频率分量:由于这些电流无法用维护人员配备的标准便携式仪器测量,因此这种现象可能被严重低估。即使电流保持在过载保护装置容量范围内,导体仍将在较高温度下运行,从而造成可量化的能源浪费,通常相当于总负载的 2-3%。
我们可以使用一种称为“变分量子特征求解器”(VQE)的量子算法来测试变分原理的实验有效性。该算法分为 4 部分:状态准备、量子门操作、能量测量和经典优化。在 VQE 实验中,我们得到一个哈密顿量 H ,其基态能量未知。我们准备一个猜测函数(一个假设)并将其编码到量子位集合上。一旦准备好这个状态,我们就将这些量子位输入一组量子模块,这些量子模块对这些量子位执行一系列量子门操作 - 这些门操作由哈密顿量 H 决定。然后,我们测量每个量子位的能量并将它们相加以获得总状态能量。最后,我们通过经典改变初始量子态的变分参数来优化这个能量。我们用新参数重复这个过程,直到找到最小能量。