摘要:随着近年来低成本可穿戴脑电图 (EEG) 记录系统的发展,被动式脑机接口 (pBCI) 应用正在教育、娱乐和医疗保健等各种应用领域中得到积极研究。各种 EEG 特征已被用于实现 pBCI 应用;然而,经常有报道称,有些人难以充分享受 pBCI 应用,因为他们的 EEG 特征的动态范围(即其随时间变化的幅度)太小,无法用于实际应用。进行初步实验以寻找与不同心理状态相关的个性化 EEG 特征可以部分避免这一问题;然而,对于大多数 EEG 特征动态范围足够大以用于 pBCI 应用的用户来说,这些耗时的实验是没有必要的。在本研究中,我们尝试从静息状态脑电图 (RS-EEG) 预测个人用户最广泛用于 pBCI 应用的脑电图特征的动态范围,最终目标是识别可能需要额外校准才能适合 pBCI 应用的个人。我们使用基于机器学习的回归模型来预测三种广泛使用的脑电图特征的动态范围,已知这三种特征与大脑的效价、放松和集中状态有关。我们的结果表明,脑电图特征的动态范围可以预测,归一化均方根误差分别为 0.2323、0.1820 和 0.1562,证明了使用短暂静息脑电图数据预测 pBCI 应用的脑电图特征的动态范围的可能性。
本研究的目的是调查脑电图静息状态连接是否与智力相关。165 名参与者参加了这项研究。记录了每位参与者 6 分钟的闭眼脑电图静息状态。分别计算了两个完善的同步测量 [加权相位滞后指数 (wPLI) 和虚相干性 (iMCOH)] 以及传感器和源脑电图空间的图论连接指标。使用瑞文渐进矩阵测量非语言智力。根据神经效率假设,alpha 波段范围内的大脑网络路径长度特征(平均和特征路径长度、直径和接近中心性)与传感器空间的非语言智力显着相关,但与源空间无关。根据我们的结果,非语言智力测量的差异主要可以通过从包含节点之间弱连接和强连接的网络构建的图形指标来解释。
摘要:已有多项旨在评估智力生产力和专门设计的任务的研究。然而,结果可能无法反映实际的智力生产力,因为设计的任务与办公室工作不同。同时,办公室工作人员有两种心理状态(工作和暂时休息状态),它们在脑力工作过程中交替变化。如果能检测到员工的心理状态,就能更准确地衡量生产力。在本研究中,作者旨在通过测量脑力工作时的生理指标(如脑电图、心电图和眼外肌和眼轮匝肌的肌电图)来开发一种检测暂时休息状态的方法。从这些测量指标中,作者提取了 6 个特征,即脑电波和脑电波、心率的低频和高频波以及眨眼和扫视眼球运动的间隔。它们被用来通过马哈拉诺比斯判别分析来检测暂时休息状态。实验结果显示,检测准确率为80.2%。该结果显示,生理指标作为心理状态检测方法之一具有可行性。
