太空碎片首次通过1957年10月的人工卫星卫星施普尼克(Sputnik 1)首次发射(NASA,n.d。)开始积聚在地球轨道上。从那时起,越来越多的废弃物体增加了潜在灾难的机会,包括诱导空间碎片的敲击作用,即凯斯勒综合征(国家空间中心,2021年)。这种影响可以消除地球的卫星基础设施,包括每天文明依靠的天气监测,导航和通信。,2020年,114个发射,大约有1,300颗卫星进入太空,而在2021年,该数字增加到了1,400个新卫星的发射(“多少,”,2021年)。主要是,空间碎片位于低地球轨道(LEO),位于地球表面2,000公里以内,尽管在赤道以上35,786公里的地静止轨道(GEO)中可以找到某些碎屑。在2021年,美国太空监视网络(USSSN)跟踪了超过0.1m的15,000块空间碎片。高度决定了卫星或碎屑返回地球所需的时间。在重新进入地球大气之前,几年的物体在600公里以下的轨道范围内,而几个世纪以上的物体将绕1,000公里的轨道轨道轨道(不列颠尼卡,n.d。)。
1 SpaceX 的姊妹公司 Space Exploration Holdings, LLC(SpaceX Holdings)被授权使用 Ku 波段和 Ka 波段频谱发射和运营超过 4,400 颗非地球静止轨道 (NGSO) 卫星(呼号 S2983 和 S3018)。参见 Space Exploration Holdings, LLC,33 FCC Rcd. 3391 (2018)(SpaceX 空间站许可证);另见 Space Exploration Holdings, LLC,FCC 21-48(rel. Apr. 27, 2021)(SpaceX 空间站许可证修改),上诉待决 sub nom。Viasat, Inc. v. FCC,案件编号 21-1123(DC Cir. 2021),修改了初始许可证。 2019 年 5 月,SpaceX 开始发射卫星以填充该星座,截至 2022 年 6 月 1 日,已发射了 2,500 多颗卫星。SpaceX 于 2020 年获得了固定终端用户客户地面站的运营许可,可与 SpaceX Holdings 的 NGSO 星座进行通信。请参阅无线电台授权,IBFS 文件编号 SES-LIC-20190211-00151(呼号 E190066)(2020 年 3 月 13 日发布)。本命令将这些应用程序分别称为“消费者 ESIM 应用程序”和“企业 ESIM 应用程序”。
本文介绍了全球导航卫星系统 (GNSS) 网络在海上空间通信、导航和监视 (CNS) 中的结构,用于增强部署无源、有源和混合全球定位卫星系统 (GDSS) 网络的船舶的导航和定位。这些 GNSS 网络必须加强安全性并控制远洋船舶在海洋和内陆水域的航行,改善货物的物流和运输,以及船上船员和乘客的安全。与地球静止轨道 (GEO) 卫星星座集成的海上 GNSS 网络正在提供重要的全球卫星增强系统 (GSAS) 架构,该架构由两个第一代 GNSS 即 GNSS-1 基础设施建立。GNSS-1 网络由两个子网组成,例如美国全球定位系统 (GPS) 和俄罗斯全球卫星导航系统 (GLONASS)。这两个 GNSS-1 网络在远洋船舶的非常精确的计时、跟踪、引导、定位和导航方面都发挥着重要作用。目前,GNSS-1 网络(GPS 和 GLONASS)均用于海事和许多其他移动和固定应用,以提供可用于定位远洋船舶的增强精度和高完整性监控。为了改进 GNSS-1 网络,有必要在多个区域卫星增强系统 (RSAS) 内进行增强,作为 GSAS 基础设施的集成部分。
预计月球和地月空间活动将会增加,这带来了安全隐患,也要求加强地月领域的态势感知能力。这些已在多份美国政府文件中有所概述,包括国家空间委员会的《深空探索和发展的新时代》11、美国国家航空航天局与美国太空部队 (USSF) 之间的谅解备忘录 (MOU)、9、太空部队太空顶点出版物 (Spacepower)10 和 2021 年太空工业基础状况报告。3 地月空间系统独特的轨道特性——复杂、通常不稳定的轨道以及围绕拉格朗日点的准稳定晕轨道——对态势感知能力提出了挑战。在地月空间内从一个轨道移动到另一个轨道,以及从地月空间移动到地球静止轨道或日地拉格朗日点,都十分容易,这既为态势感知带来了挑战,也为新颖的任务设计带来了机遇。在本文中,我们描述了对地月安全至关重要的任务类型,重点关注技术差距和需求,并推荐了国家层面所需的具体政策和技术开发,以确保美国在地月领域的利益安全。
摘要:本研究使用神经网络探索退役地球静止卫星复杂的纵向进程。目标是建模和预测卫星在时间维度上的纵向动态。历史卫星经度数据经过彻底的预处理,以训练所有六颗退役卫星的单输入和三输入配置的时间序列神经网络,从而获得全面的纵向行为洞察。结果显示出令人印象深刻的结果:预测和测量经度之间的平均均方误差 (MSE) 为 1.55x10 -3 ,回归接近 1。这种收敛意味着所采用的神经网络方法与复杂的问题领域之间存在很强的一致性。这些结果强调了所选神经网络方法在解决退役地球静止卫星轨迹建模所带来的挑战方面的适用性和有效性。这项研究的影响涵盖了各个领域。深入了解长期轨道变化有助于理解卫星行为,增强轨迹预测和卫星管理和空间技术进步的决策。此外,该研究还强调了准确预测卫星退役后行为的重要性。这有助于更好地规划任务、优化资源,并制定更有效的空间垃圾处理策略。关键词:退役卫星、地球静止轨道、神经网络、纵向演化、轨道动力学。
1.在本命令和授权中,我们有条件地部分批准 AST&Science LLC (AST) 的请求,发射并运行其计划中的低地球轨道 (LEO) 非地球静止轨道 (NGSO) 卫星星座。1 具体而言,我们有条件地批准五颗卫星的运行,这些卫星将使用 37.5-42 GHz(空对地)、47.2-50.2 GHz(地对空)和 50.4-51.4 GHz(地对空)频段的频率运行馈线链路和标称遥测、跟踪和指挥 (TT&C) 操作。我们进一步授权 AST 在 430-440 MHz(空对地和地对空)、2025-2110 MHz(地对空)和 2200-2290 MHz(空对地)频段对其授权卫星进行 TT&C。关于此项授权,我们处理了 CTIA、T-Mobile USA, Inc. (T-Mobile) 和 Verizon 提交的三份拒绝请愿书、Hughes Network Systems, LLC、EchoStar Mobile Limited 和 EchoStar Global Australia Pty Ltd(统称 EchoStar)提交的非正式反对意见,以及针对此申请提交的各种评论和信函。我们推迟考虑 AST 的授权请求,授权 AST 部署和操作其他 243 颗请求的卫星,并推迟授予其在任何额外频率上运行的权限,包括分配给地面服务的任何频段,它最终将寻求利用这些频段提供太空补充覆盖 (SCS)。2
阿丽亚娜-5E 显然,发送到地球静止轨道(阿丽亚娜的主要市场)的商业通信卫星的质量将会继续增长。阿丽亚娜-5 进入 GTO 的目标容量为 5.97 吨,将不再能够容纳每次发射两颗卫星,而这对于盈利至关重要。因此,1995 年 10 月在图卢兹举行的欧空局部长理事会批准了阿丽亚娜-5E(E=Evolution)计划,将双有效载荷 GTO 容量提高到 7.4 吨,预计 2002 年投入使用。大部分改进(800 千克)来自于将主发动机升级为 Vulcain-2 型号:通过加宽喉管 10%、增加燃烧室压力 10%、延长喷嘴和改变 LOX/LH 2 混合比,将推力提高到 1350 kN。最后一个要素要求将油箱舱壁降低 65 厘米,将推进剂质量增加到 170 吨。焊接助推器壳体而不是用螺栓将它们连接在一起可节省 2 吨重量,并允许在顶部段多装 2430 公斤推进剂,从而将 GTO 容量提高 300 公斤。VEB 的新复合结构可节省 160 公斤重量。用更轻的 Sylda-5 替换 Speltra 运载器可增加 380 公斤容量。燃烧期间的滚动控制将由推进器提供
阿丽亚娜-5E 显然,用于地球静止轨道(阿丽亚娜的主要市场)的商业电信卫星的质量将继续增长。阿丽亚娜-5 的目标容量为 5.97 吨,GTO 将不再能够容纳每次发射两颗卫星,这对盈利至关重要。因此,1995 年 10 月在图卢兹举行的 ESA 部长理事会批准了阿丽亚娜-5E(E=Evolution)计划,将双有效载荷 GTO 容量增加到 7.4 吨,目前预计将于 2002 年投入使用。大部分改进(800 公斤)来自将主发动机升级为 Vulcain-2 型号:通过加宽喉部 10%、增加燃烧室压力 10%、延长喷嘴和改变 LOX/LH 2 混合比,将推力增加到 1350 kN。最后一个元素要求将油箱舱壁降低 65 厘米,将推进剂质量提高到 170 吨。将助推器外壳焊接在一起而不是用螺栓连接在一起可节省 2 吨,并允许顶部部分多装 2430 公斤推进剂,从而将 GTO 容量提高 300 公斤。VEB 的新复合结构可节省 160 公斤。用更轻的 Sylda-5 替换 Speltra 运载机可增加 380 公斤的容量。燃烧期间的滚动控制将由推进器提供
摘要 自由空间光通信正在成为一项成熟的技术,近几年已在太空中进行了多次演示。日本国家信息通信技术研究所 (NICT) 在过去三十年中进行了多项最重要的在轨演示。然而,这项技术尚未得到广泛的商业应用。为此,NICT 目前正致力于开发一种小型激光通信终端,该终端可安装在超小型卫星上,同时还兼容各种其他不同平台,满足广泛的带宽要求。该设计采用的策略是创建一个多功能激光通信终端,无需大量定制即可在多种场景和平台上运行。本文介绍了 NICT 目前为开发该终端所做的努力,并展示了已经为初步测试开发的原型,并对其进行了描述。这些测试将首先包括使用无人机进行性能验证,目的是将原型安装在高空平台系统 (HAPS) 上,以建立 HAPS 与地面之间的通信链路,然后与地球静止轨道 (GEO) 进行通信,从而覆盖广泛的操作条件。对于这些测试,在前一种情况下,无人机的终端是一个简单的发射器,而 HAPS 的终端是可移动的地面站;在后一种情况下,终端是 GEO 卫星 ETS-IX,预计 NICT 将于 2023 年发射。关键词:自由空间光通信、无线通信、空间激光通信、小型化终端
阿丽亚娜-5E 显然,发送到地球静止轨道(阿丽亚娜的主要市场)的商业通信卫星的质量将会继续增长。阿丽亚娜-5 进入 GTO 的目标容量为 5.97 吨,将不再能够容纳每次发射两颗卫星,而这对于盈利至关重要。因此,1995 年 10 月在图卢兹举行的欧空局部长理事会批准了阿丽亚娜-5E(E=Evolution)计划,将双有效载荷 GTO 容量提高到 7.4 吨,预计 2002 年投入使用。大部分改进(800 千克)来自于将主发动机升级为 Vulcain-2 型号:通过加宽喉管 10%、增加燃烧室压力 10%、延长喷嘴和改变 LOX/LH 2 混合比,将推力提高到 1350 kN。最后一个要素要求将油箱舱壁降低 65 厘米,将推进剂质量增加到 170 吨。焊接助推器壳体而不是用螺栓将它们连接在一起可节省 2 吨重量,并允许在顶部段多装 2430 公斤推进剂,从而将 GTO 容量提高 300 公斤。VEB 的新复合结构可节省 160 公斤重量。用更轻的 Sylda-5 替换 Speltra 运载器可增加 380 公斤容量。燃烧期间的滚动控制将由推进器提供