引用本文: 种峻楷, 胡广超, 高建明, 霍向涛, 郭敏, 程芳琴, 张梅.面向未来“双碳”形势下低阶煤高值化利用研究进展与思考[J].北科 大:工程科学学报 , 优先发表.doi: 10.13374/j.issn2095-9389.2024.10.02.001 CHONG Junkai, HU Guangchao, GAO Jianming, HUO Xiangtao, GUO Min, CHENG Fangqin, ZHANG Mei.Research progress and new thoughts for high-value utilization of low-rank coal according to the future “dual-carbon” policy[J].Chinese Journal of Engineering , In press.doi: 10.13374/j.issn2095-9389.2024.10.02.001
具有种子层的基质 Yanbing Han、Ryan Trottier、Sebastian Siol、Bethany Matthews、Matthew Young、Charles B.
无定形铁钙磷酸盐 (Fe-ACP) 对某些啮齿动物牙齿的机械性能起着至关重要的作用,牙齿非常坚硬,但其形成过程和合成途径仍不清楚。本文报道了在柠檬酸铁铵 (AIC) 存在下含铁无定形磷酸钙的合成和表征。铁在所得颗粒中以纳米级均匀分布。制备的 Fe-ACP 颗粒在水、模拟体液和醋酸盐缓冲溶液 (pH 4) 等水性介质中高度稳定。体外研究表明这些颗粒具有良好的生物相容性和成骨特性。随后,利用放电等离子烧结 (SPS) 来固化初始 Fe-ACP 粉末。结果表明,陶瓷的硬度随铁含量的增加而增加,但铁过量会导致硬度迅速下降。可以获得硬度为 4 GPa 的磷酸铁钙陶瓷,高于人类牙釉质。此外,由铁钙磷酸盐组成的陶瓷表现出增强的耐酸性。本研究提供了一种制备 Fe-ACP 的新方法,并展示了 Fe-ACP 在生物矿化中的潜在作用以及作为制备耐酸高性能生物陶瓷的起始材料。
摘要:三氧化钼 (MoO 3 ) 是一种重要的过渡金属氧化物 (TMO),由于其在现有技术和新兴技术(包括催化、能源和数据存储、电致变色器件和传感器)中的潜力,在过去几十年中得到了广泛的研究。最近,人们对二维 (2D) 材料的兴趣日益浓厚,与块体材料相比,二维材料通常具有丰富的有趣特性和功能,这导致了对 2D MoO 3 的研究。然而,大面积真正的 2D(单原子层至几原子层厚)MoO 3 尚未实现。在这里,我们展示了一种简单的方法来获得晶圆级单层非晶态 MoO3,该方法使用 2D MoS2 作为起始材料,然后在低至 120°C 的基板温度下进行紫外臭氧氧化。这种简单而有效的过程可产生具有晶圆级同质性的光滑、连续、均匀和稳定的单层氧化物,这通过几种表征技术得到证实,包括原子力显微镜、多种光谱方法和扫描透射电子显微镜。此外,使用亚纳米 MoO3 作为夹在两个金属电极之间的活性层,我们展示了最薄的基于氧化物的非挥发性电阻开关存储器,该存储器具有低压操作和高开/关比。这些结果(可能可扩展到其他 TMO)将使进一步探索亚纳米化学计量 MoO3 成为可能,扩展超薄柔性氧化物材料和器件的前沿。关键词:晶圆级、单层、氧化钼、非晶态、电阻开关存储器
摘要:最近兴起的卤化物基固体电解质(SE)具有良好的离子电导率、宽的电化学稳定性窗口以及与高压氧化物正极的良好兼容性,是高性能全固态电池(ASSB)的理想候选材料。与卤化物 SE 中的结晶相相比,非晶态组分很少被理解,但在锂离子传导中起着重要作用。本文揭示了通过机械化学方法制备的卤化物基 SE 中非晶态组分的存在很常见。发现快速的锂离子迁移与非晶态比例的局部化学有关。以 Zr 基卤化物 SE 为例,可以通过掺入 O 来调节非晶化过程,从而形成角共享的 Zr-O/Cl 多面体。这种结构配置已通过 X 射线吸收光谱、对分布函数分析和逆蒙特卡罗建模得到证实。独特的结构显着降低了锂离子传输的能垒。结果显示,非晶态 Li 3 ZrCl 4 O 1.5 在 25 ° C 时可实现 (1.35 ± 0.07) × 10 − 3 S cm − 1 的增强离子电导率。除了提高离子电导率外,通过掺入 O 对 Zr 基卤化物 SE 进行非晶化还可获得良好的机械变形能力和良好的电化学性能。这些发现为合理设计高性能 ASSB 所需的卤化物 SE 提供了深刻见解。
5. 公开招标地点和日期 (1)地点:日本陆上自卫队留萌卫戍部队休息室 (2)日期和时间:2024 年 7 月 30 日星期二上午 10 点 6. 参加资格 (1)不属于《预算、会计和审计法》第 70 条规定的人员。此外,未成年人、被监护人或接受协助的人,即使已经取得订立合同所必需的同意,也属于同一条款内有特殊事由的情况。 (2)不属于《预算会计审计法》第七十一条规定情形的。 (3)已完成2022年度、2023年度、2024年度防卫省竞标资格(各省厅统一资格)登记手续,并已获得合格人员认证,“货物销售”等级为“D”以上,具备参加北海道地区竞标的资格。 (4)该人不属于“暂停与设备等及服务采购相关的指定等”附件的对象。 (5)该人目前没有受到合同官员或其他类似人员的交易暂停。 7.保证金等事项 (1)投标保证金:免除(但是,如果未按照《投标和签订合同指南》的规定办理合同手续,则中标人将被视为未同意签订合同,并将收取中标金额的百分之五的罚款。) (2)合同保证金:免除(但是,如果承包商不履行合同,则至少要收取合同金额的百分之十的罚款。) (3)延误赔偿金:每延误一天,将收取合同金额的千分之一或以上。 8. 无效投标 (1) 不具备第 1 项规定的参加竞标所需资格的人员所作的投标。 (2) 投标金额、投标人名称和印章难以确定的投标。 (3) 违反其他有关投标条件的投标。 (4) 通过电报或传真进行的投标。 (5) 投标人在投标开始时间之前迟到的投标。 (6) 未履行有关排除黑社会组织的承诺的人员所作的投标和承诺,且包含虚假内容或出现违反承诺的情况。 9. 中标确定方法
[摘要]长的非编码RNA(LNCRNA)是由200多个核苷酸构成的RNA分子,表现出相对较低的序列保护。很长一段时间以来,它们被视为“转录噪声”,即在生物领域中的非功能性RNA分子。近年来,随着研究的进步,科学家们在lncrnas中揭示了许多小型开放式阅读框(SORF),其中一些可以编码微肽。这些微肽已被证实参与了各种细胞过程和基因表达调节网络,扮演着至关重要的作用。这一发现为进一步探索生活活动以及临床诊断和疾病治疗的新研究方向开辟了新的研究方向。本综述总结了LNCRNA编码的菌根在病理和生理过程中的作用,微肽的亚细胞定位和功能机制以及微肽研究方法的进展,旨在为新型积分基于磨性的诊断诊断和治疗方法提供洞察力和参考。[关键词]长的非编码RNA;小开放阅读框;微肽;肿瘤
摘要:非晶态金属 (AM),特别是非晶态铁磁金属,被认为是一种令人满意的磁性材料,可用于开发高效、高功率密度的电磁设备,例如电机和变压器,这得益于其各种优点,例如合理的低功耗和中高频下的非常高的磁导率。然而,这些材料的特性尚未得到全面研究,这限制了其在具有通常具有旋转和非正弦特征的磁通密度的高性能电机中的应用前景。在不同磁化下对 AM 进行适当的表征是将这些材料用于电机的基础之一。本文旨在广泛概述在存在各种磁化模式(特别是旋转磁化)的情况下的 AM 特性测量技术,以及用于先进电机设计和分析的 AM 特性建模方法。还讨论了可能的未来研究任务,以进一步改进 AM 应用。
热电设备将热量转化为电能,不会产生温室气体排放,并有可能作为可穿戴设备的能源。目前的努力重点是设计既具有高转换效率又具有机械灵活性的材料。半赫斯勒材料(例如 TiNiSn)表现出良好的化学稳定性和热电效率,但它们固有的脆性对柔性设备的应用构成了挑战。在这里,TiNiSn 薄膜在室温下通过直流磁控溅射沉积,以研究它们对柔性设备应用的弯曲响应。因此,考虑了不同的基材:Si、Kapton、丝绸和打印纸,而 Si 被用作参考。分别采用能量色散 X 射线光谱和广角 X 射线散射分析沉积薄膜的成分和结构。通过扫描电子显微镜检查薄膜形态。此外,还采用密度泛函理论 (DFT) 探索柔性基板与非晶态 TiNiSn 之间的界面,并计算柯西压力,这是延展性/脆性行为的关键指标。非晶态 TiNiSn 薄膜对柔性 Kapton、丝绸和纸基板表现出良好的粘附性。施加机械载荷,即弯曲至 154 ◦,以评估裂纹形成,仅在 78 ◦ 和 154 ◦ 处出现少量裂纹,从而表明具有一定程度的柔性。DFT 数据支持这些发现,显示非晶态 TiNiSn 与柔性基板单体之间的粘附强度中等。计算出的柯西压力为 30 GPa,表明 TiNiSn 在非晶状态下具有延展性。因此,替代其他耗时的合成方法、消除对高温的需求以及提供对各种基板具有良好粘附性的无毒且经济高效的材料是非晶态 TiNiSn 薄膜成为柔性热电装置的良好候选材料的原因。
传统透明导电氧化物 (TCO) 的技术策略是采用简并掺杂宽带隙半导体来实现两个关键特性:电导率和光学透明度。宽带隙半导体被选为主体材料,其带间跃迁高于可见光谱,而掺杂剂则增加载流子密度,从而提高电导率。锡掺杂氧化铟 (ITO) 因其在可见光谱中实现了高电导率和光学透明度的最佳平衡而得到广泛应用。[3] 然而,由于铟矿的供应有限,ITO 用作 TCO 的使用越来越多,导致 ITO 成本上升。[4] 同时,许多其他应用,如日盲探测、紫外 (UV) 光刻、紫外发光二极管和紫外固化,都需要紫外光谱中的透明导体。[5–8] 然而,传统的高电导率 TCO 在光谱的紫外侧表现出低透射率。 [1]