hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
高谐波产生(HHG)已引起了对材料特性和超快动态的探索的极大关注。然而,缺乏对HHG和其他准颗粒(例如声子)之间耦合的考虑,一直阻碍对HHG中多体相互作用的理解。在这里,我们通过研究非绝热(NA)相干偶联的HHG来揭示了Quasiparticle耦合的强场动力学中多体电子载体机制。相干的声子被揭示出通过声子变形效应引起的绝热带调制以及多个山谷中光载体的Na和非平衡分布有效地影响HHG。绝热和NA机制通过影响声子周期和HHG强度振荡的相位延迟而离开指纹,这两者在实验上都是可测量的。对这些数量的研究可以直接探测材料中电子相互作用。
关键电离分数的概念对于高谐波生成至关重要,因为它决定了最大的驱动激光强度,同时保留了谐波的相位匹配。在这项工作中,我们揭示了第二个非绝热的临界电离馏分,这基本上扩展了相匹配的谐波能量,这是由于气体等离子体中强激光场的强烈重塑而产生的。我们通过针对广泛的激光条件进行实验和理论之间的系统比较来验证这种情况。尤其是,高谐波光谱与激光强度的性质经历了三种独特的场景:(i)与单原子截止的巧合,(ii)强光谱延伸和(iii)光谱能量饱和。我们提出了一个分析模型,该模型可以预测光谱扩展,并揭示了非绝热效应对中红外激光器的重要性。这些发现对于在光谱和成像中应用的高亮度软X射线源的开发很重要。
摘要:可再生能源 (RES) 份额的不断增加需要有合适的储能系统来提高电网灵活性,而压缩空气储能 (CAES) 系统可能是一个有前途的选择。本研究提出并分析了一种无二氧化碳的非绝热 CAES 系统。该工厂配置源自 McIntosh 非绝热 CAES 工厂的缩小版,其中天然气被绿色氢气取代,由光伏发电厂供电的质子交换膜电解器现场生产。在本研究中,氢气生产系统组件的尺寸设计为最大化光伏能源发电的自耗份额,并逐年分析设计参数对 H 2 -CAES 工厂性能的影响。此外,还讨论了天然气和氢气在能源消耗和二氧化碳排放方面的比较。结果表明,通过利用所有光伏能源生产,拟议的氢燃料 CAES 可以有效匹配发电情况和天然气燃料电厂的年产量,同时实现零二氧化碳排放。
量子控制在量子计算机的实际应用中起着不可替代的作用。然而,要找到更合适、更多样化的控制参数,必须克服一些挑战。我们提出了一种有前途且可推广的基于平均保真度的机器学习启发式方法来优化控制参数,其中使用具有周期性特征增强的神经网络作为拟设。在通过逆向工程实现猫态非绝热几何量子计算的单量子比特门时,与简单形式的三角函数控制参数相比,我们的方法可以产生保真度明显更高(> 99.99%)的相位门,例如π/ 8门(T门)。单量子比特门对系统噪声、加性高斯白噪声和退相干具有很强的鲁棒性。我们用数字证明了神经网络具有扩展模型空间的能力。借助我们的优化,我们提供了一种在玻色子系统中实现高质量级联多量子比特门的可行方法。因此,机器学习启发的方法在非绝热几何量子计算的量子最优控制中可能是可行的。
我们引入了一种新方法,利用物理信息神经网络 (PINN) 的优势来解决由 NQ 量子比特系统组成的量子电路优化中的反非绝热 (CD) 协议。主要目标是利用物理启发的深度学习技术来准确解决量子系统内不同物理可观测量的时间演化。为了实现这一目标,我们将必要的物理信息嵌入到底层神经网络中以有效地解决这个问题。具体来说,我们对所有物理可观测量施加了厄米性条件,并利用最小作用量原理,保证根据底层物理学获得最合适的反非绝热项。所提出的方法提供了一种可靠的替代方法来解决 CD 驱动问题,摆脱了以前依赖经典数值近似的方法中通常遇到的限制。我们的方法提供了一个通用框架,可以从与问题相关的物理可观测量中获得最佳结果,包括时间上的外部参数化(称为调度函数)、涉及非绝热项的规范势或算子,以及系统能级的时间演化等。该方法的主要应用是 H 2 和 LiH 分子,由采用 STO-3G 基础的 2 量子比特和 4 量子比特系统表示。所给出的结果证明了通过利用泡利算子的线性组合成功推导出非绝热项的理想分解。这一属性为其在量子计算算法中的实际实现带来了显著的优势。
摘要 几何相具有抵抗某些类型局部噪声的内在特性,因为它只依赖于演化路径的全局特性。同时,非阿贝尔几何相是矩阵形式,因此可以自然地用于实现高性能量子门,即所谓的完整量子计算。本文回顾了非绝热完整量子计算的最新进展,并重点介绍了各种可以提高门性能的最优控制方法,包括门保真度和鲁棒性。此外,我们还特别关注其可能的物理实现和一些具体的实验实现的例子。最后,通过所有这些努力,在最新技术范围内,实现的完整量子门的性能在某些条件下可以优于传统的动态量子门。
一个人可以使用描述性命名法(例如“量子波方程”)或同名命名法(对于同一示例,“schrödinger方程”)。后者更好地融入了讲故事的方法,尽管必须始终在某个地方提供描述!在这里,为了方便“热力学III几何”特刊的读者,我们欣赏了有关各种复杂系统的“浆果阶段”分析的非常大的文献。这不是特刊的编辑摘要,而是试图将与特殊问题相关的技术领域连接起来,目前几乎完全断开了连接。特别是,一组工人解决了“定量的几何热力学”,因此[1],另一个工人解决了光学系统[2],而另一批则解决了快速/慢速动态系统[3]。令人惊讶的是,这些都是正式相关的,在这里,我们希望给出某种连贯的概述,尤其是这些领域,尤其是这些关系。在这个通用场中进行了多少工作是非凡的,因此此“审查”只是指示。它强调并不详尽。如Gu等人。[4]指出,“当经典或量子系统经历其参数空间缓慢变化控制的环状进化时,它获得了一种拓扑相位因子,称为几何或浆果阶段,这揭示了量子力学中的量规结构”。“ Hannay的角度”是此额外量子相[5]的经典对应物,从旋转顶部的优雅处理中可以清楚地看出[6]。[8],也有助于总结了该领域)。量子几何阶段和经典的Hannay角度确实密切相关,这是通过最近的工作确认的断言[7]。aharonov – bohm效应(由零幅度的字段引起的波函数相移的奇怪现象)到目前为止已经进行了充分的研究。甚至被认为是对重力场的物质波的适当时机的相移(参见Oversstreet等人。这种相移被称为“浆果”,1984 [2]或“几何阶段”之后的“浆果阶段”(使用Berry首选的描述性命名法,他指出了包括Pancharatnam在内的许多杰出贡献者,包括Pancharatnam [9])。Berry最初对绝热系统进行了处理,但后来意识到对非绝热情况的概括是“直接的” [10]。这也用摩尔[11]优雅地解释了Floquet定理(固态物理学家称为Bloch定理)。摩尔指出,“浆果阶段”也被称为“ aharonov – anandan阶段”,因为他们的治疗实际上是去除绝热限制的第一个[12],尽管似乎(非绝热)Aharonov – Aharonov – Anandan阶段可能与(Adibiabatic)
摘要:变形是子系统的时间进化降低密度矩阵的趋势,即假设与状态统计集合相对应的形式,而不是纯状波函数的相干组合。当分子过程涉及电子状态和核的坐标的变化时,例如紫外线或可见光光光化学或电子非弹性碰撞,电子子系统的密度矩阵会减少与核子系统的相互作用。我们提出了概念化这种折叠的必要背景;特别是,我们讨论了纯状态和混合状态的密度矩阵描述,并讨论了指针状态和腐烂时间。然后,我们讨论如何与混合算法的衰减和轨迹表面跳跃方法中的连贯切换处理,以进行电子非绝热过程的半经典计算。
在旋转框架中观察到的两级系统的共振横向驾驶在拉比频率下两个退化状态,这是量子力学中出现的等效性。尽管成功地控制了自然和人工量子系统,但由于不循环术语等非理想性,可能会出现某些局限性(例如,可实现的栅极速度)。我们引入了一个由两个电容耦合的透射量子台形成的超导复合量子轴(CQB),其具有一个小的避免的横穿(小于环境温度)在两个能级之间。我们使用仅基带脉冲,非绝热过渡和连贯的Landau-Zener干扰来控制这种低频CQB,以实现快速,高效率,单Qubit的操作,其Clifford Fidelities超过99.7%。我们还在两个低频CQB之间执行耦合的量子操作。这项工作表明,使用仅基带脉冲可行,对低频量子的通用非绝热是可行的。
