(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年12月3日发布。 https://doi.org/10.1101/2024.12.02.626472 doi:Biorxiv Preprint
摘要 - 本文介绍了超维计算(HDC)域中数据的聚类。在先前的工作中,已经提出了一个基于HDC的聚类框架,称为HDCluster。但是,现有的HDCluster的性能并不强大。在初始化步骤中随机选择簇的高量向量,HDCluster的性能被降解。为了克服这种瓶颈,我们通过探索编码数据的相似性(称为查询过量向量,分配了初始群集过度向量。组内过度向量的相似性比组间高向量具有更高的相似性。利用查询过量向量之间的相似性结果,本文提出了四种基于HDC的聚类算法:基于相似性的K-均值,相等的Bin宽度直方图,相等的BIN高度直方图和基于相似性的亲和力传播。实验结果说明:(i)与现有的HDCluster相比,我们提出的基于HDC的聚类算法可以实现更好的准确性,更健壮的性能,更少的迭代和更少的执行时间。基于相似性的亲和力提出优于八个数据集上的其他三种基于HDC的聚类算法,而聚类准确性则高于2%约38%。(ii)即使对于一通聚类,即没有群集高量向量的任何迭代更新,我们提出的算法也可以提供比HDClter更强大的聚类精度。(iii)在八个数据集上,当八分之一的数据集投影到高维空间上时,八分之一可以达到更高或可比的精度。传统聚类比HDC更可取,当时簇数k的数量很大。
强化学习(RL)通过互动来培训计算模型来解决复杂的决策。但是,由于昂贵或危险错误的高风险,在实地世界环境中的直接培训(例如自动驾驶或医疗程序)通常是不切实际的。因此,RL通常依赖于模拟环境或静态离线数据集。但是,这种依赖引入了一个关键的挑战,称为“现实差距” - 训练条件与现实世界应用中遇到的动态之间的差异。本演示文稿解决了旨在通过增强RL策略的有效性来弥合这一差距的创新策略: - 强大的RL优化:我们深入研究了扰动的战略使用,以优化从模拟器中汲取的政策。这种方法着重于提高这些政策的适应性和鲁棒性,使它们更适合于可变性和意外条件的现实应用程序。- 离线RL优化:进一步的讨论将探讨汉密尔顿 - 雅各比 - 贝尔曼(HJB)方程的应用,作为增强在静态数据集中训练的策略的方法的方法。该技术对于在无法实现与环境的实时互动的情况下改善现实世界的适用性至关重要。
在强相关系统中,微观理解竞争订单是现代量子多体物理学的关键挑战。例如,条纹顺序的起源及其与Fermi-Hubbard模型中的配对的关系仍然是中心问题之一,并且可以帮助理解库酸酯中高温超导性的起源。在这里,我们分析了T-J模型的掺杂的混合二维(混合)变体中的条纹形成,其中荷载载流子仅限于一个方向移动,而磁性SU(2)相互作用是二维的。在有限温度下,使用密度矩阵重新归一化组,在没有配对的情况下,我们发现了稳定的垂直条带相,以不优量的磁序和远距离电荷密度的波浪pro纤维纤维纤维在广泛的掺杂范围内。我们在磁耦合〜J / 2的阶面找到高临界温度,因此在电流量子模拟器的范围内。多体状态的快照,可以通过量子模拟器访问,在混合设置中揭示了隐藏的自旋相关性,当考虑纯粹的磁背景时,抗Fiferromagnetic相关性会增强。所提出的模型可以看作是实现条纹阶段的父级哈密顿量,其隐藏的旋转相关性导致预测的对量子和热闪光的弹性。
毛细作用可用于将各向异性胶体粒子引导到精确位置,并通过使用界面曲率作为施加场来定向它们。我们在实验中展示了这一点,在实验中,界面的形状通过钉扎到不同横截面的垂直柱上而形成。这些界面呈现出明确定义的曲率场,可沿复杂轨迹定向和引导粒子。轨迹和方向由理论模型预测,其中毛细作用力和扭矩与高斯曲率梯度和与曲率主方向的角度偏差有关。界面曲率在尖锐边界附近发散,类似于尖锐导体附近的电场。我们利用这一特性在优选位置诱导迁移和组装,并创建复杂结构。我们还报告了一种排斥相互作用,其中微粒沿曲率梯度轮廓远离平面边界壁。这些现象在微粒子和纳米粒子的定向组装中具有广泛的用途,在制造具有可调机械或电子性能的材料、乳液生产和封装方面有潜在的应用。
在较高的生物体中,单个细胞通过表观遗传调节(例如基因表达调节)对信号和扰动做出反应。然而,除了移动其转录曲线外,细胞的适应性响应还可以导致不同细胞类型的比例变化。最近的方法(例如SCRNA-SEQ)允许在单细胞水平上询问表达,并可以量化复杂组织样品中的单个细胞类型簇。为了识别显示不同生物条件之间差异组成的簇,最近引入了差异比例分析。然而,严重缺失了用于重复和未复制的单细胞数据集的生物信息学工具。在本手稿中,我们提出了Scanpro,这是一种用于比例分析的模块化工具,无缝集成到Python环境中广泛接受的框架中。scanpro是快速,准确的,可以不重复支持数据集,并且旨在由生物信息学专家和初学者使用。
由小有机化合物引起的分析干扰继续对早期药物发现构成巨大挑战。已经开发了各种计算方法来识别可能引起测定干扰的化合物。但是,由于可用于模型开发的数据稀缺,这些方法的预测准确性和适用性受到限制。在这项工作中,我们介绍了E-Guard(专家指导的鲁棒干扰复合检测的增强),这是一个新颖的框架,试图通过整合自我介绍,积极的学习和专家指导的分子产生来解决数据稀缺和失衡。e-guard迭代地用与干扰相关的分子丰富了训练数据,从而产生了具有出色性能的定量结构交流关系(QSIR)模型。我们以四个高质量数据集,氧化还原反应性,纳米酸酯酶抑制和萤火虫荧光素酶抑制的示例,证明了电子方形的实用性。与未经e-Guard数据增强的模型相比,这些数据集的MCC值最高为0.47,其富集因子的改进有两个或更高。这些结果突出了电子保守物作为缓解早期药物发现中测定干扰的可扩展解决方案的潜力。
摘要:几个世纪以来,香棍已被广泛用于宗教,文化和国内环境中,燃烧时会发出宜人的香气。虽然他们的香水具有一种平静和精神上的联系感,但燃烧的香气可以将有害物质释放到空气中,这可能会带来健康风险。香棒通常由木材,草药和树脂等天然成分组合制成,但是诸如香水,着色剂和燃烧辅助物等合成添加剂也通常用于增强其外观和性能。被燃烧时,这些添加剂可以释放有毒物质,包括颗粒物(PM),挥发性有机化合物(VOC)和多环芳烃(PAHS)。暴露于这些排放已与一系列健康问题有关,从呼吸道刺激和哮喘到更严重的疾病,例如心血管疾病和癌症。本评论论文研究了香棍的毒理学方面,重点是分析添加剂,产品燃烧及其健康影响。关键字:香棒,健康风险,有毒排放,燃烧副产品,合成添加剂1。引言香已经用于各种目的的不同文化和文明已有数千年的历史,包括宗教仪式,精神实践,净化,芳香疗法,甚至是药用应用。虽然不可否认,虽然象征性和文化的重要性是不可否认的,但越来越多的合成添加剂的使用以及在封闭空间中燃烧的广泛燃烧引起了人们对其潜在健康影响的担忧。与此近年来,法医毒理学已成为评估使用香的潜在风险的重要工具,尤其是与其制造业中使用的添加剂以及在燃烧过程中释放的产品相关的添加剂。a)历史:香的历史可以追溯到远古时代,有证据表明其在埃及,印度,中国和美索不达米亚使用。古埃及人在宗教仪式上使用香并抵御邪灵,而在印度,它成为印度教和佛教仪式不可或缺的一部分。香中的中国文本也提到了它与精神领域进行交流。在中东,经常被燃烧以营造出愉悦的氛围和出于药用目的,甚至在贸易路线中发挥了作用,尤其是将阿拉伯半岛与地中海联系起来的著名的“香气”。的香,进一步强调了其宗教意义。在这些古老的文明中,香是由芳香木材,树脂(例如,乳香和没药)和草药等天然成分制成的,当燃烧时会产生愉悦的气味。这些天然成分因其精神和药用特性而受到评价,并且它们的使用持续了几个世纪。b)现代用法和添加剂:在现代,香气的使用已经超越了宗教和精神目的,成为家庭,办公室,水疗中心和冥想中心的流行物品。
面部反射疗法•30分钟•$ 115的面部反射疗法是一种直接与神经系统合作以改善身体健康,情绪状态和整体健康状况的治疗实践。我们的面孔是外部世界的镜子,它们每天都会积累愉悦和压力。面部反射学自然会释放出内部和外部压力的沉重负担,以在面部和身体内部产生运动和流动。按摩和面部施用的点用精确的面棒激活,以获得有益的结果。
摘要 — 本研究通过一种计算效率高的鲁棒控制策略解决了联网电动汽车的生态自适应巡航控制问题。该问题在空间域中采用非线性电力传动系统模型和运动动力学的真实描述来制定,以产生凸最优控制问题 (OCP)。OCP 通过一种新颖的鲁棒模型预测控制 (RMPC) 方法解决,该方法处理由于模型不匹配和前导车辆信息不准确而引起的各种干扰。RMPC 问题通过半正定规划松弛和单线性矩阵不等式 (sLMI) 技术解决,以进一步提高计算效率。使用实验收集的驾驶周期评估所提出的实时鲁棒生态自适应巡航控制 (REACC) 方法的性能。通过与标称 MPC 进行比较来验证其鲁棒性,标称 MPC 会导致速度限制约束违规。所提出方法的能源经济性优于最先进的时域 RMPC 方案,因为可以将更精确拟合的凸动力传动系统模型集成到空间域方案中。与传统恒定距离跟随策略 (CDFS) 的额外比较进一步验证了所提出的 REACC 的有效性。最后,验证了 REACC 可以借助 sLMI 和由此产生的凸算法实现实时实现。