摘要:接触时表面电气化的现象是一个长期存在的科学难题,例如,琥珀色的带电样品吸引了羽毛的书面记载,可追溯到公元前600年。与机械摩擦的电绝缘体相关的静电危害已充分记录,并且商用产品的设计,例如复印机和激光打印机,基于电绝缘体的静态充电。尽管如此,这种现象的物理化学起源仍在争论中。这种观点概述了我们对接触电气背后的机制以及绝缘体电化学的新兴研究领域的最新进展。研究开始证明如何利用在绝缘表面上存在的静态电荷,目的是推动氧化还原反应。这些研究有助于阐明底层化机制,并定义了用于元素发光,金属成核和无面膜光刻的新平台。本文将帮助研究人员在电动机,物理,绿色能量,传感和材料中工作,以了解接触电气对其各自领域的含义。特别关注化学,电子和机械因素影响三束化学反应,以此结论是该领域进一步发展所面临的挑战。
摘要 目的 . 脑机接口是开发免提、脑控设备的关键组件。脑电图 (EEG) 电极对于以非侵入性方式收集神经信号特别有吸引力。方法。在这里,我们探索使用在硅基碳化硅上生长的外延石墨烯 (EG) 来高灵敏度检测 EEG 信号。主要结果和意义。与商用干电极相比,这种干燥和非侵入性方法表现出显着改善的皮肤接触阻抗,以及卓越的稳健性,允许在高盐环境中长时间和重复使用。此外,我们报告了新观察到的 EG 电极表面调节现象。EG 与皮肤电解质的长时间接触使石墨烯的晶粒边界功能化,导致通过物理吸附形成薄薄的水表面膜,从而将其接触阻抗降低三倍以上。这种效果在高盐环境中尤为明显,也可以进一步定制为预处理,以提高 EG 传感器的性能和可靠性。
位置传感器是一个反馈设备,也是任何闭环致动空间机构的组成部分。此反馈设备通常是电位计。电位器给出了与机械输入相关的电压变化。电位仪自太空飞行开始以来就使用了,并且相对具有成本效益。它们可从较低的交货时间较低的几家供应商那里获得。但是,机械滑动触点引入了其他机械电阻,并限制了寿命和速度。物理传感范围也可能受到限制,并且在寿命的后期,电输出是嘈杂的。要克服这一限制并补充Ruag的Inhouse产品组合,开始了开发工作。目标是开发一个简单的低成本位置传感器,能够替换或提供有效的电位仪。将非接触式工作原则设定为发展目标。关于成本和空间遗产的重点比解决方案更重视。光学编码器的工作原理适用于不锈钢缝面膜,永久磁铁和霍尔传感器开关的组合。所得的低分辨率非接触传感器已成功原型并在功能上进行了测试。简介
摘要图中NaVα-和β-育s的传奇分子组织在健康的心肌心肌中。心脏电压门控钠通道Na V 1.5通常在心室心肌细胞的多个位置以及β1和/或β3的多个位置,包括在侧面膜,插入式椎间盘和小窝。在t小管中鉴定了其他神经NaVα-异型,包括Na V 1.1,Na V 1.3和Na V 1.6,均与β1和β3一起识别。在专门的Caveolar脂质膜中,除了L型Ca 2 +通道和其他K +通道(未显示)外,具有KIR2.1的Na V 1.5局部。进一步的功能专业是由独特的反式,细胞– cell,Na v 1.5相互作用,由β1亚基促进的相互作用采用了替代结构构象,在该结构构象中,细胞外Ig结构域延伸到互插的盘(插图)。β3亚基也可能促进了Na V 1.5大分子复合物在顺式中(在同一细胞上)的稳定,但是α-和β-亚基的相对组织的定义较少。使用biorender.com创建的图像。
摘要 - 由于高级集成电路的特征大小不断收缩,因此分辨率增强技术(RET)被利用来改善光刻过程中的可打印性。光学接近校正(OPC)是旨在补偿面罩以生成更精确的晶圆图像的最广泛使用的RET之一。在本文中,我们提出了一种基于级别的OPC方法,具有高面膜优化质量和快速收敛。为了抑制光刻过程中条件爆发的干扰,我们会提供一个新的过程窗口感知的成本函数。然后,采用了一种新颖的基于动量的进化技术,该技术取得了重大改进。我们还提出了一种自适应共轭梯度方法,该方法有望具有更高的优化稳定性和更少的消耗时间。此外,图形过程(GPU)被利用用于加速所提出的算法。我们将输出掩码从机器学习基于掩码优化流中作为输入和工作作为重新定位掩码的后过程。ICCAD 2013基准测试的实验结果表明,我们的算法在解决方案质量和运行时开销中均优于以前的所有OPC算法。
硅被认为是下一代可充电锂离子电池中有望的阳极材料。为了克服固有的缺点,例如低电导率和不稳定的固体电解质界面膜,不同的SI和碳(C)纳米复合材料,但它们通常会受到复杂的结构设计,高制备成本的困扰,并且在有限的电化学性能中,C和SI之间的Teractions弱弱。在此,描述了一种简单的,环保的,低成本和可控的途径,可以通过简单的机械球铣削和磁性重新修复(MR)来制备从再生废物玻璃和商业碳纳米管(G-SI/CNT)中,具有较强的Si-C纳米管复合材料,具有较强的Si-C共价键合。由于导电CNTS网络,强烈的Si-C共价键在CNT和Si纳米颗粒之间形成,因此,G-SI/CNT电极的出色特异性容量为〜895 mAh G-1,以及在0.1 A g-g-1之后的0.1 a g-1之后的能力保留率为84.3%。由回收废玻璃产生的G-SI/CNTS复合材料在高能锂离子电池中作为阳极材料具有巨大的潜力。
摘要 - 由于高级集成电路的特征大小不断收缩,因此分辨率增强技术(RET)被利用来改善光刻过程中的可打印性。光学接近校正(OPC)是旨在补偿面罩以生成更精确的晶圆图像的最广泛使用的RET之一。在本文中,我们提出了一种基于级别的OPC方法,具有高面膜优化质量和快速收敛。为了抑制光刻过程中条件爆发的干扰,我们会提供一个新的过程窗口感知的成本函数。然后,采用了一种新颖的基于动量的进化技术,该技术取得了重大改进。我们还提出了一种自适应共轭梯度方法,该方法有望具有更高的优化稳定性和更少的消耗时间。此外,图形过程(GPU)被利用用于加速所提出的算法。我们将输出掩码从机器学习基于掩码优化流中作为输入和工作作为重新定位掩码的后过程。ICCAD 2013基准测试的实验结果表明,我们的算法在解决方案质量和运行时开销中均优于以前的所有OPC算法。
直接观察超大型望远镜的METIS仪器对系外行星和原始磁盘的直接观察将为行星形成和系外行星大气的过程提供新的见解。这是由于功能强大的矢量涡流冠状动曲,可以抑制星光以揭示周围微弱的信号。在这里,我们介绍了将相位掩膜处于冠状动脉核心的过程。这些环形凹槽相掩膜由钻石中的深层次波长组成,这些光栅使用具有强偏见的电感耦合氧等离子体蚀刻。METIS仪器所需的带宽比以前证明了此类com ponents的带宽,从而导致具有更高纵横比和更垂直壁的光栅设计。为了实现这一目标,用于钻石蚀刻的蚀刻面膜从铝更改为硅,并增加了血浆功率。我们还改进了减少成品成分的光栅深度以微调它们的方法。以及改进的光学测试,这使我们能够生成迄今为止为天文N波段展示的最佳涡旋相掩码。
摘要:热管理是最苛刻的检测器技术和微电子学的未来的主要挑战之一。微流体冷却已被提议作为现代高功率微电子中热量耗散问题的完全集成解决方案。基于硅的微流体设备的传统制造涉及用于表面图案的先进的,基于面膜的光刻技术。此类设施的有限可用性阻止了广泛的开发和使用。我们演示了无掩模激光写作的相关性,以有利地替换光刻步骤并提供更原型的过程流。我们使用脉冲持续时间为50 ps的20 W红外激光器雕刻并钻出525 µm厚的硅晶片。阳极键与SIO 2晶片用于封装图案表面。机械夹紧入口/出口连接器完成了完全操作的微动设备。该设备的功能已通过热流体测量验证。我们的方法构成了一个模块化的微观分化解决方案,该解决方案应促进针对共同设计的电子和微流体的新概念的原型研究。
bacille de la laberculose(TB)Q1。什么是结核菌芽孢杆菌(TB)?TB是由芽孢杆菌引起的呼吸道疾病。暴露于结核病杆菌会引起潜在感染,这意味着该人没有症状,不能将结核病传递给他人。tb可以变得活跃,这意味着该人将开始出现像咳嗽这样的症状。当她出现症状时,她可以将其传播给另一个人。TB是可以避免的,可以通过抗生素治疗。Q2。结核病如何传播?TB芽孢杆菌是通过空气传播的,也就是说,当一个有活跃的肺部或呼吸道咳嗽,打喷嚏或说话的人时,他可以在空中蔓延。Q3。我们如何控制结核病的传播?呈现主动感染的C/P/R将被放置在单个房间(最好在负压下),其中有必要采取预防措施,以防止空气传播。工作人员必须戴上N95面膜,其紧密度和调整已得到验证,以确保它不会吸入可能包含芽孢杆菌的小空气颗粒。C/P腔室门必须在清洁之前,期间和之后保持关闭。