第1阶段的重点是对大阿德莱德地区计划讨论文件的出版,吸收和理解(讨论文件)。讨论文件概述了委员会在2050年及以后建立对大阿德莱德的愿景时的关键领域。它包含重要的预测,趋势和增长分析,在计划该地区的未来时必须考虑。这是一份强大的基于证据的文件,启发了与所有利益相关者以及投资塑造大阿德莱德未来的对话。
摘要 本文介绍了一种非平衡马赫-曾德干涉仪 (MZI) 固有的干涉特性,该干涉仪通过精密制造技术在绝缘体上硅平台上实现。研究深入探讨了自由光谱范围 (FSR) 与非平衡 MZI 各种长度之间的复杂关系。值得注意的是,模拟结果与实验结果的比较显示出了惊人的一致性。 关键词:马赫-曾德干涉仪、光子学、绝缘体上硅、波导 1. 简介 硅光子器件因其吸引人的特性而越来越受欢迎。小尺寸、大折射率对比度和 CMOS 兼容性是硅光子器件的特性之一,这些特性使其成为电信、生物医学等多个行业的首选器件[1]。马赫-曾德干涉仪 (MZI) 是最广泛使用的硅光子器件组件之一。在硅平台上实现的马赫-曾德尔干涉仪是各种应用的关键元件,从电信(用于光子波导开关和光子调制器)到传感和信号处理 [2]、[3]、[4]。MZI 的实用性源于其干涉特性,这是通过在 MZI 的两个臂之间产生相对相移来实现的。这种相移可以通过使用移相器或使 MZI 的两个臂的光路长度不相等来实现。MZI 的两个臂不相等的 MZI 配置称为不平衡 MZI。在本文中,我们展示了一种不平衡 MZI 设计,我们对其进行了建模、模拟和随后的制造。我们研究了几种不平衡 MZI 设计,并分析了这些设备的模拟和实验传输特性。我们阐明了波导建模的过程,并进行了分析以补偿制造变化,并详细介绍了一些数据分析。 2. 材料与方法 2.1 理论 马赫-曾德干涉仪 (MZI) 包括一个分束器和一个光束组合器,它们通过一对波导相互连接,如图 1 所示。MZI 配置包括分束器将波导输入端 (E i ) 的入射光分成波导的臂或分支。随后,光在输出端重新组合成光束
2024年9月9日 作者:大阪部康夫 第374空运联队公共事务部第374军事支援连和第374宪兵连的飞行员参加了8月20日至21日举行的美韩联合演习“乙支自由之盾24”。美国第 730 空中机动中队与军方和驻韩美军合作,在横田空军基地进行了非战斗人员撤离行动(NEO)训练。乌鲁奇自由之盾24演习是一项以防御为重点的演习,旨在加强美韩同盟,改善联合防御态势,促进朝鲜半岛的安全与稳定。 为了这次演习,来自汉弗莱营的美国陆军第 8 集团军的 55 名士兵乘坐 C-130J 超级大力士从横田空军基地第 36 空运中队前往横田。通过模拟非战斗人员从朝鲜半岛的撤离,同时想象实际可能发生的后勤挑战,我们的目的是加强整个联合部队的战备状态。 横田空军基地接受近地天体并运行近地天体跟踪系统(NTS),该系统管理疏散人员的信息。 “这次演习的目标之一是测试 NTS 系统在太平洋地区各国的实时运行情况,”第 374 部队支援中队战备、计划和太平间部门主管玛丽亚·加福德 (Maria Gafford) 中士说。 “横田和座间营地的 NTS 操作员将必要的数据输入系统,使我们能够确认所有人员的下落。”我们从李战备中心工作人员那里收到了疏散期间生活所需的财务和后勤信息。美国红十字会人员还提供了茶点,美国陆军第 765 运输站营的士兵分发了临时食品。 “整个流程非常顺利,”加福德中士回忆道,并补充说,让他印象特别深刻的一件事是,“红十字会成员在我们移动时为我们烤饼干,并为我们提供现煮的咖啡,缓解了参与者的疲劳。” ”。 演习期间,驻日美军司令兼第五航空队司令拉普中将还邀请航空自卫队空中支援大队司令森田武大将观摩模拟撤离。两人听取了有关非战斗人员撤离后勤支持的情况通报。 NEO 是由美国国务院指导的一项行动,旨在安全疏散美国公民、国防部平民以及其他指定东道国和第三国的国民,使其免受自然灾害、人为灾害或其他危险情况的影响。 2011年3月,日本发生9.0级大地震,随后引发大规模海啸,引发福岛第一核电站事故,超过9000名国防部家属从日本撤离。当时因NEO而自愿撤离的家属已安全返回祖国。
在大会期间,韩国提出了两个新的国际标准。第一个是“ BCI开发人员的设计考虑”,并提供了以用户为中心的设计指南,例如用户年龄组和生物识别技术,可帮助用户更方便地使用BCI产品或服务。第二个是“多功能BCI系统设计的接口指南”标准,该标准自动检测用户的运动,切换到操作模式或REST模式,并防止不必要的故障。如果将来制定和应用这两个标准,则大脑和设备之间的兼容性将增加,并且有望通过在各种环境中稳定使用来促进BCI工业化。
1 韩国庆熙大学生命科学学院生物制药生物技术系,龙仁市 17104;rezaulshimul@khu.ac.kr(MRK);niajmorshed96@khu.ac.kr(MNM);safiadorin@khu.ac.kr(SI);dcyang@khu.ac.kr(DCY) 2 孟加拉国库什蒂亚 7003 伊斯兰大学生物科学学院生物技术和遗传工程系 3 孟加拉国拉杰沙希附属大学瓦伦德拉生物科学研究所微生物学系,纳托尔,拉杰沙希 6400 4 韩国庆熙大学生命科学学院生物技术研究生院,龙仁市 17104;shnwzmohd@yahoo.com(SM);ramyabinfo@gmail.com(RM); yeonjukim@khu.ac.kr (YJK) 5 Hanbangbio Inc., Yongin-si 17104, Republic of Republic 6 Department of Veterinary International Medicine, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Republic 7 AIBIOME, 6, Jeonmin-ro 30beon-gil, Yuseong-gu 34052, Republic of韩国 * 通讯地址:jh.song@cnu.ac.kr (JHS); dongukyang82@gmail.com (DUY)
全职带薪工程实习生,负责支持自主物流信息系统 (ALIS) 项目的工程和计算机编程团队。帮助维护运行 F-35 飞机的实时系统的数据并排除故障。获得的技能:排除数据故障、团队建设、数据完整性、系统工程方法、基本编码技能。
o 将战略气候影响评估纳入区域计划。 所有包含沿海地区的区域计划都应考虑采用南澳大利亚州的蓝碳战略。该战略将为区域计划提供宝贵的战略信息和行动,这些信息和行动可能会影响区域计划中包含的目标和结果。 2022 年水安全声明为每个地区提供了关键的水安全数据。该声明将为区域计划提供宝贵的战略信息和行动,这些信息和行动可能会影响区域计划中包含的目标和结果。 DEW 负责制定一系列战略和指南,涵盖气候变化、海岸、皇家土地、生态系统保护、火灾管理、世界遗产区、洪水、遗产、原生植被、公园、水库、水和土壤以及土地管理等主题。