预印本(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此版本的版权所有者于 2022 年 1 月 20 日发布。;https://doi.org/10.1101/2022.01.17.476477 doi:bioRxiv 预印本
流体饱和度的定量评估对于页岩油的形成评估很重要。但是,由于成岩成岩矿物质和孔类型的复杂性,目前尚无有效的方法来识别流体发生状态并定量评估湖泊页岩油的流体饱和度。在本文中,提出了一种基于核磁共振(NMR),X射线衍射(XRD)和扫描电子显微镜(SEM)测量的方法来定量评估流体饱和度的方法,用于对Fengcheng地层的页岩样品,Mahu Sag,Mahu Sag,Mahu Sag,中国Jungag。这些研究表明,页岩油岩石主要含有石英,长石,白云岩,方解石和粘土矿物质,它们都会产生有机和无机孔。流体主要以沥青,粘土结合的水,结合水,结合油和可移动油的形式出现。根据这些实验的发现,提出了混合的岩石指数(MI)和泥指数(SI)将页岩油地层分为三种类型,包括沙子,白云岩页岩和泥岩。a t 1 -t 2 2d 2d NMR流体的出现状态表征图被建立,以通过MI,SI和NMR特性识别不同的流体。此外,提出了一种方法来定量计算不同地层中页岩油的结合和可移动流体的系数。最后,提出的方法被成功地应用于河谷形成中的湖间页岩油中,以鉴定流体的发生状态并定量评估流体饱和度。
基于钻探(WBDF)由于其低成本和环境友好而被广泛使用。9,10然而,WBDF和页岩地层之间的长期相互作用会导致页岩水合和肿胀,从而导致井眼中可能发生的各种问题。页岩抑制剂可以抑制粘土矿物与WBDF的水的相互作用引起的水合。因此,高性能页岩抑制剂的发展至关重要。在页岩地层中使用了各种抑制剂来控制井眼的稳定性,例如氯化钾(KCL),胺,聚合物和纳米材料。kCl是主要的无机盐抑制剂。11然而,KCL的抑制作用受到限制。基于胺的页岩抑制剂的抑制能力比KCL更好,并且基于胺的页岩抑制剂已被广泛研究和应用。聚合物抑制剂的抑制作用主要是形成致密的LM。12纳米材料通过密封微孔,13和纳米二氧化硅(SIO 2)与胺化合物结合使用,从而减少了水分子与页岩表面的接触。14,15,但这些页岩抑制剂受到各种疾病的限制,包括较差的热度分辨率,有限的抑制能力,环境问题,复杂的准备过程和高成本。超支聚乙烯亚胺(HPEI)以其吸附,溶解度,多功能性和协同稳定性而闻名。16有
为确保长期安全和性能,地质核废料处置库需要低渗透性屏障,如膨润土缓冲层和/或页岩围岩。页岩不仅渗透性低,而且容易发生随时间变化的变形(即蠕变),从而修复损伤,但页岩蠕变对核废料处置库长期性能的影响尚不清楚。特别是,页岩的各向异性(即层理)可能对其蠕变行为产生重大影响,从而影响核废料处置库的长期性能。在本研究中,进行了数值模拟,目的是展示各向异性页岩蠕变对页岩中通用地质核废料处置库的应力和渗透性演变的影响。模拟中使用了 TOUGH-FLAC 模拟器,这是一种热-水力 (THM) 耦合数值代码。为实现该目标,对各向异性页岩蠕变模拟结果与不同模拟工况(无蠕变(即弹性蠕变)、各向同性蠕变和长期蠕变页岩工况)的结果进行了比较。比较结果表明,弹性和各向同性蠕变页岩工况分别导致对处置库应力和渗透率的估计过高和低估,而长期蠕变页岩工况后期积累的蠕变大于前期,有助于在保持压缩球应力的同时抑制较大的剪应力和拉应力的形成,从而导致渗透率水平持续较低。这些结果表明,使用弹性和各向同性蠕变形成模型进行性能评估将提供应力和渗透率的上限和下限估计,而各向异性蠕变形成模型将给出更合理的估计,具有长期蠕变特性的页岩将对核废料处置库的安全性和性能的许多方面有益。
瑞士汝拉山脉的旧 Belchen 隧道采用钻孔爆破法在膨胀沉积岩(即富含硬石膏的泥灰岩 (Gipskeuper) 和 Opalinus 粘土页岩 (OPA))中开挖。早在 20 世纪 60 年代施工期间,这两种岩层就通过高膨胀压力和隆起对隧道支撑造成了严重损坏,后来这些隧道不得不再次翻新。重要的维护和修理促使我们用隧道掘进机 (TBM) 建造了第三条新的 Belchen 隧道(2016 – 2021 年)。在本研究中,我们展示了在位于新 Belchen 隧道强烈断层的 OPA 段的监测段获取的现场数据集,这些数据集用于研究四年多以来的应力演变和控制机制。主要数据集包括总径向压力、径向应变、岩石含水量、岩石和混凝土温度的时间序列,以及从钻孔日志和三维摄影测量开挖面模型分析中获得的地质结构细节。最后,一系列理想化的数值模拟探索了测量温度变化对测量总压力的影响,证实了温度对与混凝土凝固和季节性气候变化有关的径向压力有很强的影响。我们发现,在我们的监测部分,隧道支撑上的径向压力非常不均匀,即它们介于 0.5 MPa 和 1.5 MPa 之间,并且在开挖 4 年后仍在缓慢增加。测量的压力是旧 Belchen 隧道管中测量压力的 2 到 5 倍,其大小与实验室测试中获得的膨胀压力相似。EDZ 渗透性测量、含水量演变和隧道底板的径向应变数据表明,膨胀过程有助于长期径向压力的积累。热弹性变形和膨胀可能会因构造断层的局部复活和裂缝起始应力水平下的间隙灌浆开裂而叠加。
随着世界上常规的石油和天然气资源的消耗,非常规石油和天然气资源已成为勘探与开发的重点和热点(Li等,2019; Yin等,2020a; Fan.fan等; 2020; Li,20222a)。近年来,在中国已经探索和开发了一系列非常规的石油和天然气资源(例如,砂岩气,页岩气,煤层甲烷和水合物)在中国进行了探索和开发,其中已经对砂岩气和页岩气进行了商业开发(Wu等人,2022222; Xie等,2022)。紧密的砂岩气体是中国最早开发的非常规的气体,在中国的总天然气储量和生产中起着重要作用,总资源约为17.4×10 12 - 25.1×10 12 m 3,其可回收资源约为8.8×10 12-12.1×10 12 M 3(Zou等,2018年)。在过去的十年中,中国在页岩气中取得了显着的探索和发展成就。在四川盆地内外建造了八个页岩气场(例如Fuling,Luzhou,Changning,Weiyuan和Zhaotong)。在2021年,中国的页岩气产量达到230 m 3×10 8 m 3,主要来自较浅的页岩地层。深层页岩气资源(超过3500 m)将是超过80%总资源的长期勘探和开发目标(Li J.等,2022a)。紧密的砂岩和页岩储层具有超低孔隙度和渗透率的特征,并且页岩储层具有最差的物理特性(Li J.等,2022b; Fan.fan et al。,2022)。因此,这种储层的多尺度孔和断裂特征的定量表征对紧密的油气和天然气具有很大的意义。
页岩表征对于理解其作为碳氢化合物储层的潜力和优化液压压裂操作至关重要。在这项研究中,我们评估了页岩表征的三种方法的有效性:X射线衍射(XRD),阳离子交换能力(CEC)和线性溶胀仪(LSM)。该研究是对来自特定位置的一组页岩样品进行的。使用XRD分析样品以确定其矿物学,CEC以测量其离子交换能力和LSM以评估其肿胀特性。结果表明粘土稳定剂和KCL盐的表现要好得多。不同添加剂的浓度可能对肿胀产生正/负面影响。CEC值可以通过使用XRD结果确定的统计方法来确定每个形成。总体而言,该研究强调了使用XRD,CEC和LSM组合进行全面的页岩表征的潜力。关键字:页岩岩属性; FRAC流体优化;碳氢化合物储层
1.30 当前的活动是测试页岩气。到目前为止,虽然已经开发或正在开发许多获准的场地,并且已经钻了井,但 2011 年仅在一个场地进行了两次作业。由于页岩气作业与地壳运动之间存在相关性,能源与气候变化部 (DECC) 要求运营商暂停活动。现在将确定当前的申请,并且在政府于 2012 年 12 月 13 日为兰开夏郡的页岩气勘探开绿灯后,可能会收到进一步的规划申请。第一个作业地点将位于西兰开夏郡的班克斯,第二个地点拟定为菲尔德韦斯特比的 Annas Road。财政大臣于 2012 年 12 月 5 日在秋季声明中宣布了对从事页岩气勘探的公司提供税收优惠的计划,并成立了一个新的页岩气办公室以加快生产。任何与这些问题相关的问题都应该向 LCC 提出。
Generali致力于在勘探和生产活动中逐步减少其对非常规石油和天然气部门的暴露(即上游部分)除了一些特定的中游活动外,还支持到2050年到达碳中性投资组合的目标。自2019年11月以来,该集团在与Tars Sands勘探和生产有关的项目和发行人方面没有进行新的投资,包括被确定为有争议的相关管道的运营商。同时,它正在剥离属于此范围的投资组合中的资产。生效于2023年1月1日,将军将排除政策扩展到参与探索和生产油水(页岩油,页岩,页岩气,紧密的油,紧燃气)的石油和天然气的发行人,以及在北岸和近海勘探和生产活动的发行人,这些活动属于北极圈内。