Dong-Ho Lee 1 , Hwan-Seok Jeong 1 , Yeong-Gil Kim 1 , Myeong-Ho Kim 2 , Kyoung Seok Son 2 , Jun Hyung Lim 2 , Sang-Hun Song 1,* , and Hyuck-In Kwon 1,* Abstract —In this study, a quantitative analysis was conducted on the effects of channel width on electrical performance degradation induced by self-heating stress (SHS) in顶门自我对准的共蓝淀粉锌氧化物(IGZO)薄膜晶体管(TFTS)。从SHS之前和之后获得的转移和电容 - 电压曲线,我们透露,TFT的电性能沿通道长度方向不均匀地降解,并且该降解的程度在具有较宽通道宽度的TFT中更为显着。在制成的Igzo TFT中,SHS下的阈值电压偏移(δVTh)主要归因于Igzo活性区域的浅供体状态的密度和受体样的深状态的增加,并且电子陷入了Sio X Gate Patectric中的快速和慢速陷阱。此外,我们使用基于状态δVTh Th Th的TFTs的TFTS的子仪密度来进行SHS诱导的δv Th起源于每个降解机制。尽管每种降解机制的每一个δv th都随着通道宽度的增加而增加,但增加了电子捕获到Sio X Gate中的慢陷阱
图1:(a)横向设备结构的示意图,(b)悬挂式sin鼓的SEM图像,上面覆盖了25 nm al薄纤维。为了最大程度地减少金属对阻尼的贡献,在大多数夹紧区域中都不存在。16该薄片通过两个矩形Al电极与外部电极连接。(c)最终设备结构的SEM图像,其中Al/sin电容偶联具有悬浮的顶门,以及(d)测量设置的示意图,其中PCB部分上的微波腔以焦糖颜色标记。微波炉通过连接到其悬浮的顶门的粘合线与sin鼓(紫色)耦合。用Al薄片覆盖的Sin鼓通过粘结线连接到两个微带传输线。一个用于驱动机械谐振器,另一个用于通过微波反射方案17检测机械运动。更多详细信息显示在支持信息(SI:纳米化,微波炉重新射击的设置和建模)中。
CLWT-115 TM 风洞的精确控制和温度范围使其可用于测试散热器性能以及校准空气和温度传感器。完整的风洞适合大多数实验台,并由标准交流电源插座供电。它比传统的闭环风洞或环境测试室占地面积小。风洞的测试部分可从顶门或侧面进入,以安装和重新定位电路板、组件和传感器。内部导轨提供了一种简单的机制来安装不同尺寸的测试样本(例如 PCB、散热器)。测试部分的侧壁上设有仪器端口,用于放置温度和速度传感器,例如热电偶、皮托管和热线风速计。
CLWT-115 TM 风洞的精确控制和温度范围使其可用于测试散热器性能以及校准空气和温度传感器。完整的风洞适合大多数实验台,并由标准交流电源插座供电。它比传统的闭环风洞或环境测试室占地面积小。可以从顶门或侧面进入风洞的测试部分,以安装和重新定位电路板、组件和传感器。内部导轨提供了一种简单的机制来安装不同尺寸的测试样本(例如 PCB、散热器)。测试部分的侧壁上提供仪器端口,用于放置温度和速度传感器,例如热电偶、皮托管和热线风速计。
摘要:多末端电双层晶体管最近在模仿合成和神经功能方面引起了广泛的兴趣。在这项工作中,提出了一个离子凝胶的石墨烯突触晶体管,以通过利用石墨烯的双极性能和离子 - 凝胶的离子电导率来模仿基本的合成行为。通过自旋涂层过程将离子 - 凝胶介电作用沉积到石墨烯膜上。我们分别将顶门和石墨烯通道分别为突触前和突触后末端。基本的突触功能成功模仿,包括兴奋性突触后电流(EPSC),峰值振幅和持续时间对EPSC的影响以及配对脉冲促进(PPF)。这项工作可以促进石墨烯突触晶体管在柔性电子中的应用。
二维(2D)半导体在高性能电子中的实际应用需要与大规模和高质量的电介质进行整合 - 然而,由于它们的悬空无键,这是迄今为止的挑战。在这里,我们报告了一种干介电整合策略,该策略使晶圆尺度和高κ电介质在2D半导体之上转移。通过使用超薄缓冲层,可以预处理下沉积,然后在MOS 2单层的顶部进行机械干燥转移。转移的超薄电介质纤维可以保留晶圆尺度的晶格和均匀性,而无需任何裂缝,表明高达2.8μf/cm 2的电容,等效的氧化物厚度降至1.2 nm,泄漏率降至1.2 nm,泄漏的电源量〜10-7 A/cm 2。Fab的顶栅MOS 2晶体管显示出固有的特性,而没有掺杂效应,启示率为〜10 7,子阈值向下旋转至68 mV/ dec,最低的界面状态为7.6×10 9 cm-2 ev-1。我们还表明,可扩展的顶门阵列可用于构建功能逻辑门。我们的研究为使用具有良好控制厚度,均匀性和可扩展性的行业兼容的ALD工艺提供了可行的途径。