摘要 — 最近,将可再生能源整合到数据中心引起了研究界的兴趣。大多数研究人员专注于 IT 和电气基础设施的联合管理,很少有人明确地将冷却整合到他们的研究中。到目前为止,人们几乎忘记了一条途径,即在可再生能源可用时对数据中心进行预冷的潜力。最近的研究从经济角度探讨了这种潜力,以避免价格高峰,但没有从生态角度探讨如何减少二氧化碳排放。在我们的工作中,我们通过研究在可再生能源可用时降低温度的程度可能有多大意义,以及与其他温度控制策略相比如何,填补了这一空白。我们建立了一个强大的热扩散物理模型和一个 MILP 公式来处理手头的问题,并提出了启发式方法,以便在可再生能源的帮助下最好地处理冷却设备。最后,我们对真实数据轨迹(IT 和可再生能源)进行实验,得出预冷确实有助于减少碳排放的结论。索引词 — 可再生能源;冷却;绿色数据中心;预冷
热湿压缩空气进入空气对空气热交换器 (1),在此被离开干燥器的干燥空气预冷。制冷剂压缩机 (3) 压缩制冷剂气体并将其推过冷凝器 (4),在此将其冷凝为高压液体。然后,制冷剂液体通过毛细管/校准孔 (5),以低压液体的形式计量进入蒸发器 (2)。微处理器通过“脉冲”控制电磁阀 (6) 的打开和关闭,使工作周期适应实际工作条件。在部分负荷条件下,只有一小部分制冷剂通过电磁阀 (7) 的校准孔口流向压缩机,因此消耗的能量较少。预冷空气进入蒸发器 (2),在那里被进入的制冷剂液体冷却到所需的露点,制冷剂液体改变相态并变成低压气体,适合在返回制冷剂压缩机 (3) 的吸入侧时继续该过程。然后,离开的冷干压缩空气返回到空气对空气热交换器 (1),在那里被进入的空气重新加热,以防止设备出汗。
H 2 和 RNG 研发基地 #1) 350 和 700 巴预冷 H 2 分配系统 #2) 隔膜和活塞压缩机 #3) 700 升生物反应器 – 在 18 巴(260 psig)和 60 - 65 o C 下运行,带有搅拌、再循环回路和细胞回收 + 在 350 巴下储存 #4) 200、400 和 900 巴储存 – 总计 625 公斤
Gibco™ CTS™ Xenon™ 电穿孔仪器 Cat. No. A50301 建议细胞浓度 20 x 10⁶ 至 100 x 10⁶ 细胞/mL 电穿孔体积 1 mL; 5–25 mL 电穿孔室容量 1 mL 5–25 mL 电穿孔体积的运行时间 7–22 分钟 电穿孔脉冲电压范围 500–2,500 V 电穿孔脉冲宽度范围 1–30 ms 电穿孔脉冲间隔范围 500–1,000 ms 电穿孔脉冲数 1–10 支持 21 CFR 第 11 部分合规性 是,可进行软件升级(请咨询) 开放平台通信 - 统一架构 (OPC-UA) 兼容性 是 云连接实用程序 是 细胞搅拌器转速 60 rpm 预冷技术 Peltier 预冷温度设定范围 10–30°C 尺寸(高 x 宽 x 深),门完全打开时 43.1 x 26.5 x 21.2 英寸(109.5 x 67.4 x 53.9 厘米) 重量 154.3 磅(70 千克) 电气额定值 100–240 V, 1,200 VA 触摸显示屏 8 英寸电容式
3.1. 将最多 30 mL 的细胞悬浮液装入输入袋。 3.2. 将输入袋和输出袋连接至各自的液体管路。 3.3. 将 MultiShot 墨盒插入仪器。 3.4. 将电穿孔室推杆向前推,使电穿孔室与仪器的电触点接合。 3.5. 将输入袋连接至支架挂钩,并将输出袋放入输出袋托盘中。 3.6. 将管子穿过每个泵和预冷块。
本研究提出了一种用于通风预热/预冷的 PCM 增强通风窗 (PCMVW) 系统,以节省建筑能源。它被设计成使用不同控制策略的夏季夜间制冷应用和冬季太阳能存储应用。建立了 PCMVW 的 EnergyPlus 模型来研究控制策略。接下来,进行了全尺寸实验来研究 PCMVW 的工作原理并验证该模型。利用经过验证的模型,将 PCMVW 的热性能和能量性能与其他 2 个通风系统进行了比较,结果表明 PCMVW 可以大大降低夏季和冬季应用的制冷/供暖能源需求。最后,本文提出了丹麦气候条件下住宅应用的控制策略。针对夏季夜间制冷应用开发的控制策略是使用玻璃间反射遮阳,直接从 PCM 热交换器向房间通风,同时应用 VW 自冷进行通风预冷模式,并使用 VW 中的空气加热房间以防止房间过冷。针对冬季太阳能储能应用开发的控制策略是使用玻璃间吸收百叶窗,利用 VW 中的热空气,并通过自冷和旁路通风冷却 VW,以防止房间过热。与原始的夏季和冬季控制策略相比,采用开发的控制策略,建筑节能分别高达 62.3% 和 9.4%。© 2020 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
大气水生成依靠热力学循环,通过三种不同的回路采用机械压缩制冷技术。制冷剂回路和热交换器经过优化,可在降低能耗的同时降低空气湿度。余冷用于预冷进气,无需额外能耗。生成的水经过过滤、矿化和紫外线技术处理,以达到最高质量标准。此外,它们还结合了用于远程控制和监控的物联网功能以及能够智能控制和调节所有系统的 SCADA 系统,确保在不同环境条件下实现最大水产量。
最高冷却水温度:30/35°C (85/95°F) 冷却能力:50 - 10000 kW (15 - 3000 吨) 工艺流量范围:10 - 2000 m 3 /h (50 - 9000 gpm) 用于空气预冷的高效绝热室(国际专利) 防冻自排水配置 大表面热交换器,带有亲水保护的铜线圈和铝翅片 内置无刷 EC 逆变器驱动电机的轴流风扇,单独接线 模块化设计,预装不锈钢歧管用于互连 不锈钢结构框架和铝制检修面板 网络监控界面
最高冷却水温度:30/35°C (85/95°F) 冷却能力:50 - 10000 kW (15 - 3000 吨) 工艺流量范围:10 - 2000 m 3 /h (50 - 9000 gpm) 用于空气预冷的高效绝热室(国际专利) 防冻自排水配置 大表面热交换器,配有亲水保护的铜线圈和铝翅片 内置无刷 EC 逆变器驱动电机的轴流风扇,单独接线 模块化设计,预装不锈钢歧管用于互连 不锈钢结构框架和铝制检修面板 网络监控界面
最高冷却水温度:30/35°C (85/95°F) 冷却能力:50 - 10000 kW (15 - 3000 吨) 工艺流量范围:10 - 2000 m 3 /h (50 - 9000 gpm) 用于空气预冷的高效绝热室(国际专利) 防冻自排水配置 大表面热交换器,带有亲水保护的铜线圈和铝翅片 内置无刷 EC 逆变器驱动电机的轴流风扇,单独接线 模块化设计,预装不锈钢歧管用于互连 不锈钢结构框架和铝制检修面板 网络监控界面