头皮脑电图(EEG)是研究实时神经现象的最流行的非侵入性方式之一。虽然传统的脑电图研究集中在识别群体级统计效应上,但机器学习的兴起促使计算神经科学的转变向时空预测分析。我们介绍了一种新颖的开源查看器脑电图预测器(EPVIZ),以帮助研究人员开发,验证和报告其预测性建模输出。EPVIZ是Python开发的轻量重量和独立软件包。 除了查看和操纵脑电图数据之外,EPVIZ还允许研究人员加载Pytorch深度学习模型,将其应用于脑电图功能,并在原始时间序列的顶部覆盖输出渠道或主题级的时间预测。 这些结果可以作为高分辨率图像保存,以用于手稿和演示文稿。 EPVIZ还为Clinician科学家提供了有价值的工具,包括频谱可视化,基本数据统计数据的计算和注释编辑。 最后,我们包括一个内置的EDF匿名模块,以促进临床数据的共享。 在一起,EPVIZ填补了急需的脑海中的差距。 我们的用户友好界面和丰富的功能集合也可能有助于促进工程师和临床医生之间的合作。EPVIZ是Python开发的轻量重量和独立软件包。除了查看和操纵脑电图数据之外,EPVIZ还允许研究人员加载Pytorch深度学习模型,将其应用于脑电图功能,并在原始时间序列的顶部覆盖输出渠道或主题级的时间预测。这些结果可以作为高分辨率图像保存,以用于手稿和演示文稿。EPVIZ还为Clinician科学家提供了有价值的工具,包括频谱可视化,基本数据统计数据的计算和注释编辑。最后,我们包括一个内置的EDF匿名模块,以促进临床数据的共享。在一起,EPVIZ填补了急需的脑海中的差距。我们的用户友好界面和丰富的功能集合也可能有助于促进工程师和临床医生之间的合作。
数字显示精度预测器(DDPP)Lazar,V。等人,数字显示精度预测指标:全球生物标志物模型的原型,用于指导具有靶向治疗的治疗并预测无进展的生存。(2021)NPJ Precis。onc。5,33。Lazar,V。等人,肿瘤和正常肺组织中的转录组学鉴定患有早期NSCLC的患者患有高度手术后复发风险,这些患者可能会受益于JCO Precision Precision肿瘤学NO。6(2022)E2200072。发表在线Lazar,V。等人,肺癌与Covid-19-19肺炎之间的合并症:免疫调节基因转录本在高ACE2表达正常肺中的作用。医学肿瘤学的治疗进展(2022),第1卷。14:1-15 Lazar,V。等人,一种转录组学方法,用于扩展治疗选择并优化肿瘤学的临床试验。 ther Adv Med Oncol(2023),第1卷。 15:1-15 Lazar V等。 基于转移性实体瘤患者的转录组学和存活之间的相关性,鉴定了关键预后基因的中央网络中心。 医学肿瘤学的治疗进展。 2024; 1614:1-15 Lazar,V。等人,一种转录组学方法,用于扩展治疗选择并优化肿瘤学的临床试验。ther Adv Med Oncol(2023),第1卷。15:1-15 Lazar V等。 基于转移性实体瘤患者的转录组学和存活之间的相关性,鉴定了关键预后基因的中央网络中心。 医学肿瘤学的治疗进展。 2024; 1615:1-15 Lazar V等。基于转移性实体瘤患者的转录组学和存活之间的相关性,鉴定了关键预后基因的中央网络中心。医学肿瘤学的治疗进展。2024; 16
摘要:地面振动是爆破活动最不利的环境影响之一,会对邻近的房屋和建筑物造成严重损坏。因此,有效预测其严重程度对于控制和减少其复发至关重要。不同的研究人员提出了几种常规振动预测方程,但大多数仅基于两个参数,即单位延迟使用的炸药量和爆炸面与监测点之间的距离。众所周知,爆破结果受许多爆破设计参数的影响,例如负担、间距、火药系数等。但这些都没有被考虑在任何可用的常规预测器中,因此它们在预测爆炸振动时显示出很高的误差。如今,人工智能已广泛应用于爆破工程。因此,本研究采用了三种人工智能方法,即高斯过程回归 (GPR)、极限学习机 (ELM) 和反向传播神经网络 (BPNN),来估计印度 Shree Cement Ras 石灰石矿爆破引起的地面振动。为了实现该目标,从矿场收集了 101 个爆破数据集,其中粉末系数、平均深度、距离、间距、负担、装药重量和炮泥长度作为输入参数。为了进行比较,还使用相同的数据集构建了一个简单的多元回归分析 (MVRA) 模型以及一种称为多元自适应回归样条 (MARS) 的非参数回归技术。本研究是比较 GPR、BPNN、ELM、MARS 和 MVRA 以确定其各自预测性能的基础研究。八十一 (81) 个数据集(占总爆破数据集的 80%)用于构建和训练各种预测模型,而 20 个数据样本(20%)用于评估所开发的预测模型的预测能力。使用测试数据集,将主要性能指标,即均方误差 (MSE)、方差解释 (VAF)、相关系数 (R) 和判定系数 (R2) 进行比较,作为模型性能的统计评估指标。本研究表明,与 MARS、BPNN、ELM 和 MVRA 相比,GPR 模型表现出更出色的预测能力。GPR 模型显示最高的 VAF、R 和 R 2 值分别为 99.1728%、0.9985 和 0.9971,最低的 MSE 为 0.0903。因此,爆破工程师可以采用 GPR 作为预测爆破引起的地面振动的有效且合适的方法。
下载宏后,将其保存在已知位置,您可以指定确切的路径。创建一个新的语法文件,然后打开您的数据集,或者添加get file ='您的数据集位置和文件名命令'命令'到语法文件的开头,以指定数据文件的位置。1然后添加以下命令(使用过程版本4.3语法对此进行了测试),替换了我的x(初始预测器),y(最终结果)和M(介体)的变量名称的变量名称,并将其替换为语法文件:cd“ c:\ jason \ temp”。插入file ='c:\ jason \ spsswin \ macros \ process.sps'。执行。过程y = hrs /x = age /m = islsum /total = 1 /boot = 10000 /seed = 10000 /model = 4 /stand = 1。执行。确保插入文件命令指向您保存的进程宏的确切位置。然后,在语法窗口中突出显示整个语法,然后运行。输出输出的第一部分(用星号线标记)给出了上图中描述的每个直接回归系数,并且与您在SPSS中使用通常的回归命令所获得的直接回归系数相同。The bootstrap tests of the indirect effect are found in the final section under the heading " TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y " and then under the subheading " Indirect effect(s) of X on Y :", where Effect gives the average estimate for indirect effect from the bootstrap samples, BootSE gives the standard error estimate, and BootLLCI and BootULCI are 95% confidence limits.如果95%的置信度限制包括零,则间接效应测试并不重要。2运行矩阵过程:************** SPSS版本4.3.1 ************************************************************************************** ************ www.afhayes.com文档可在Hayes(2022)提供。www.guilford.com/p/hayes3 *******************************************************************************************************************************************型号:4 y:hrs x:hrs x:age m:islsum样本1 mac的位置没有驱动器和前进的字母和前进的范围,'/subfie in your subfiled limer lime lime of subfiled lime'偏置校正(“加速置信度限制”),因为偏置校正的极限可能具有I型错误率略有升高(Fritz,Taylor和Mackinnon,2012; Hayes&Scharkow,2013年)。
预测氨基酸取代引起的蛋白质热稳定性的变化对于了解人类疾病和工程有用的蛋白质对临床和工业应用至关重要。虽然蛋白质生成模型的最新进展是在以结构或进化序列环境为条件的氨基酸上学习概率分布的,但在没有任务特异性训练的情况下预测各种蛋白质特性方面表现出了令人印象深刻的性能,但其强大的无监督预测能力并未扩展到所有蛋白质功能。尤其是,它们改善蛋白质稳定性预测的潜力仍未得到探讨。在这项工作中,我们提出了一个新颖的深度学习框架,它可以适应和整合两个通用蛋白质生成模型 - 一种蛋白质语言模型(ESM)和一个反折叠模型(ProteinMPNN) - 有效的稳定性预测器。马刺采用轻量级的神经网络模块来将蛋白质MPNN学到的每个残留结构表示形式重新融合到ESM的注意层中,从而为ESM的序列表示学习提供了信息。这种重新布线策略使马刺能够从序列和结构数据中利用进化模式,在这种数据中,ESM所学的序列类似分布的条件是基于由蛋白质MPNN编码的结构先验,以预测突变效应。我们通过在最近发布的Mega规模的热稳定性数据集中进行监督的培训将该集成的框架引导到稳定预测模型。此外,它通过用作提高准确性的稳定性模型来增强当前的低N蛋白适应性预测模型。在12个基准数据集中进行的评估表明,马刺提供了准确,快速,可扩展和可推广的稳定性预测,并且始终超过了当前的最新方法。值得注意的是,马刺在蛋白稳定性和功能分析中表现出显着的多功能性:与蛋白质语言模型结合使用时,它以无监督的方式准确地识别蛋白质功能位点。这些结果突出显示了马刺是推动当前蛋白质稳定性预测和机器学习引导的蛋白质启动工作流程的强大工具。马刺的源代码可在https://github.com/luo-group/spurs上获得。
参考文献 1] Klaus Greff 等人。“LSTM:搜索空间漫游。”IEEE 神经网络和学习系统学报,28 (2015): 2222-2232。 https://doi.org/10.1109/tnnls.2016.2582924。[2] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A.(2014)。更深入地了解卷积。2015 IEEE 计算机视觉和模式识别会议 (CVPR),1-9。 https://doi.org/10.1109/CVPR.2015.7298594。[3] Lee, J., Jun, S., Cho, Y., Lee, H., Kim, G., Seo, J., & Kim, N. (2017)。医学成像中的深度学习:概述。韩国放射学杂志,18,570 - 584。 https://doi.org/10.3348/kjr.2017.18.4.570。[4] Klyuchnikov, N., Trofimov, I., Artemova, E., Salnikov, M., Fedorov, M., & Burnaev, E. (2020)。NAS-Bench-NLP:自然语言处理的神经架构搜索基准。IEEE Access,PP,1-1。https://doi.org/10.1109/access.2022.3169897。[5] Lu, Z., Whalen, I., Dhebar, Y., Deb, K., Goodman, E., Banzhaf, W., & Boddeti, V. (2019)。用于图像分类的深度卷积神经网络的多目标进化设计。IEEE Transactions on Evolutionary Computation,25,277-291。https://doi.org/10.1109/TEVC.2020.3024708。[6] Zhang, T., Lei, C., Zhang, Z., Meng, X., & Chen, C. (2021)。AS-NAS:用于深度学习的具有强化进化算法的自适应可扩展神经架构搜索。IEEE 进化计算学报,25,830-841。 https://doi.org/10.1109/TEVC.2021.3061466。[7] Sun, Y., Sun, X., Fang, Y., Yen, G., & Liu, Y.(2020)。一种用于进化神经架构搜索算法性能预测器的新型训练协议。IEEE 进化计算学报,25,524-536。https://doi.org/10.1109/TEVC.2021.3055076。[8] Verma, M., Sinha, P., Goyal, K., Verma, A., & Susan, S. (2019)。一种用于爬山领域的神经架构搜索的新框架。2019 IEEE 第二届人工智能与知识工程国际会议 (AIKE),1-8。https://doi.org/10.1109/AIKE.2019.00009。[9] Zhang, H., Jin, Y., Cheng, R., & Hao, K. (2020)。通过采样训练和节点继承实现注意力卷积网络的有效进化搜索。IEEE
在许多现实世界中,必须实时进行6D自我动作估计和映射。尤其是在机器人领域,低延迟和稳健的运动估计对于控制自动驾驶是必不可少的。动态生成的地图对于避免障碍物和路径计划也是必不可少的。迄今为止,实时融合各种传感器及其大量数据仍然是一项相当艰巨的任务。当传感器遭受外部诉讼和测量误差时,问题的复杂性就会增加。当自我运动估计和映射应在6D中进行,准确,稳健,低延迟且形状较小时,问题尤其困难。在本文中,我们建议通过以粗到精细的方式利用范围,磁性和内部感测来解决问题。这项工作的内容分为两个主要小节:使用多传感器融合方法在室内环境中进行稳健的态度和标题估计,以及使用基于激光拉尔达的系统的低延迟6D EGO-MOTION估计和映射技术。在第一部分中,我们提出了一种基于偏僻的二惯性和磁性传感器的新型多传感器融合。它的发展是为了进行稳健的态度和标题估计,并能够补偿外部磁场异常。我们制定了一个基于相关的滤波器模型,用于预处理术语数据,并采用了复发性神经网络(RNN)融合模型,以在室内环境中执行强大的估计。在第二部分中,我们提出了基于LiDAR扫描切片和并发匹配方法的低延迟大满贯框架。此框架 - 在并发的多线程匹配管道中使用切成薄片的点云数据,并利用态度和标题角度来实现高更新率和低延迟6D自我感动估计。将lissajous旋转模式应用于传感器的有限视场(FOV)。二维粗糙度模型被删除,以提取特征点,以进行点云的精细匹配和注册。此外,姿势估计器会参与时间运动预测变量,该预测器有助于在地图中找到特征对应关系,以便非线性优化器的快速收敛性。我们已经通过一系列广泛的实验验证了所提出的自我运动估计和映射方法,这些实验从远程诉讼,手工接种到无人机连接设置。在整个实验中,探索了不同的环境,例如室内实验室,办公室,家庭和工业地点以及各种混合条件。表明,这些方法能够进行高精度,低延迟估计以及快速运动和环境退化方面的鲁棒性。
approx 逻辑指示是否计算更快但近似的边际效应图(精神上类似于 plotmo 包)。如果为 TRUE ,则 partial() 将计算 pred.var 中指定的预测因子的预测,同时保持其他预测因子不变(plotmo 的作者 Stephen Milborrow 称之为“穷人的部分依赖”函数)。默认值为 FALSE。注意,这也适用于 ice = TRUE。警告:此选项目前是实验性的。使用风险自负。可以(并且可能更安全)通过将特定的“样本”观察传递给 train 参数并手动指定 pred.grid 来手动执行此操作。quantiles 逻辑指示是否使用 pred.var 中列出的连续预测因子的样本分位数。如果 quantiles = TRUE 且 grid.resolution = NULL,则样本分位数将用于生成计算部分依赖性的联合值网格。 probs 概率的数字向量,值在 [0,1] 之间。(超出该范围的最大 2e-14 的值将被接受并移至附近的端点。)默认值为 1:9/10,对应于预测变量的十分位数。当 quantiles = TRUE 时,这些指定对 pred.var 中列出的连续预测变量使用哪些分位数。trim.outliers 逻辑指示在生成计算部分依赖性的联合值网格之前是否从 pred.var 中列出的连续预测器中修剪异常值(使用简单的箱线图方法)。默认值为 FALSE。type 字符串指定监督学习的类型。当前选项为 "auto" 、 "regression" 或 "classification" 。如果 type = "auto" ,则 partial 将尝试从 object 中提取必要的信息。inv.link 函数指定在计算部分依赖函数之前要应用于预测的转换(实验)。默认值为 NULL(即不进行转换)。此选项旨在用于允许非高斯响应变量(例如计数)的模型。对于这些模型,默认情况下,预测通常不会在原始响应尺度上返回。例如,泊松 GBM 通常在对数尺度上返回预测。在这种情况下,设置 inv.link = exp 将返回响应(即原始计数)尺度上的部分依赖函数。which.class 整数指定将预测概率矩阵的哪一列用作“焦点”类。默认使用第一个类。仅用于分类问题(即当 type =“classification”时)。prob 逻辑值指示分类问题的部分依赖是否应在概率尺度上返回,而不是中心 logit。如果为 FALSE ,则部分依赖函数与 logit 的尺度相似。默认值为 FALSE。recursive 逻辑指示是否使用 Friedman (2001) 中描述的加权树遍历方法。这仅适用于从类“gbm”继承的对象。默认值为 TRUE,这比用于所有其他模型的精确蛮力方法要快得多。(基于 plot.gbm 背后的 C++ 代码。) plot 逻辑指示是否返回包含部分依赖值的数据框( FALSE )或直接绘制部分依赖函数( TRUE )。默认值为 FALSE 。有关绘图详细信息,请参阅 plotPartial。
虽然人工智能 (AI)、机器学习 (ML) 和数据科学已经研究和开发了几十年,但技术发展和公众关注度最近激增。这导致市场上出现了大量的研究和新解决方案,影响到工作和个人生活的几乎每个方面。随着人们的兴趣不断增长以及投资和研究扩展到新领域,创新和讨论继续迅速发展。在实时电力运营领域,人们也认识到由于不断发生的变化,BPS 的复杂性和复杂性不断增加,其中有几个新的用例扩展了系统的假设(例如,对网络方面的担忧日益增加、过量的太阳能流入输电系统、电动汽车充电的负载显着增长、AI/ML 的功率需求不断增长、区块链上的加密货币挖掘和其他数据中心运营)。BPS 是北美能源基础设施的支柱。它对整个大陆和国家的安全和经济稳定都至关重要,并支撑着我们的日常生活。管理系统的实时可靠性需要控制室操作员拥有不断提高的认知、注意力、警惕性、知识和抽象推理水平,这必然会导致许多人考虑新的 AI/ML 解决方案。由于 BPS 是地球上最复杂的社会技术系统(涉及复杂人类和复杂系统以及它们之间复杂交互的系统),因此需要考虑许多因素以尽量减少系统风险。本文档旨在供决策者、监管者和这些技术的最终用户使用,特别是在实时操作中。断言这些技术是否应该用于实时操作是没有用的,因为对整个行业主要利益相关者的调查和访谈表明,这种情况已经发生了。“精灵”无法被放回瓶子里(本文档并未断言应该这样做)。相反,本文档提供了有关人们应该询问这些技术的问题类型的指导,以彻底了解它们的能力以及正确实施它们需要进行哪些类型的更改。以前进入市场的技术已经陷入了典型的模式,导致最初的“坎坷”实施,出现意外风险或不良事件。本文档提供了实时操作的途径(在这种操作中,此类不良事件是无法容忍的),旨在确保能够以最大程度地提高成功部署和可靠性的方式实施 AI/ML 技术。业界已经认识到,许多组织已经在考虑 AI/ML 应用,并做出了各种决定,积极尝试避免这些应用(例如,人工智能从传统的机器学习方法(例如,阻止工作计算机访问生成式预训练变压器 (GPT) 并制定有关信息安全的政策)转变为拥抱它们(例如,利用更好的客户呼叫跟踪、确保加强资产健康以及预测实时运行参数,如风力发电、太阳能发电和负载)。现在和未来的 AI/ML 技术的表面积非常巨大。本文档重点介绍当前可用的技术,这些技术是为处理特定情况而构建、训练和部署的,不能在其训练领域之外工作(例如,不能依赖太阳能发电预测器来预测风力发电),通常称为狭义人工智能(或有时称为弱人工智能)。这包括最近快速增长的领域,包括生成新内容的能力(使用 GPT 等生成式人工智能算法)。
用于空间领域感知应用的加速 AI 驱动大气预测 丹尼·费尔顿 诺斯罗普·格鲁曼公司 玛丽·艾伦·克拉多克、希瑟·凯利、兰德尔·J·阿利斯、埃里克·佩奇、杜安·阿普林 诺斯罗普·格鲁曼公司 摘要 太空激光和监视应用经常受到大气效应的影响。气溶胶、云和光学湍流引起的大气衰减和扭曲会产生有害影响,从而对任务结果产生负面影响。2019 年 AMOS 会议上简要介绍的一篇论文介绍了 2017 年在哈莱阿卡拉峰安装的地面仪器。这些仪器仍在积极收集数据,它们正在提供前所未有的空间环境实时表征,包括精确的大气传输损耗。虽然实时测量是理解和表征空间环境的第一步,但仅靠它们是不够的。为了优化任务规划,许多应用都需要对空间环境进行准确的短期大气预测。虽然大气预报并不是什么新鲜事,但最近随着 21 世纪人工智能 (AI) 技术的应用,大气预报的技能得到了极大提升。这些技术是高性能计算 (HPC) 和深度学习 (DL) 的结合。本演讲的主题是使用来自地面大气收集系统的 TB 级数据训练预测模型,并使用图形处理单元 (GPU) 加速其训练和推理的能力。本研究侧重于预测的三个时间尺度。这些时间尺度包括短期(0 到 60 分钟)、中期(1 小时到 3 小时)和长期(3 到 48 小时)。这些时间尺度代表激光和/或监视应用和任务的各种决策点。在短期预测情况下,多种 DL 技术应用于从光学地面站 (OGS) 收集的本地数据。这些 DL 技术包括使用 U-Net 卷积神经网络和多层感知器 (MLP) 和随机森林 (RF) 模型的集合。 MLP 用于从激光云高仪和红外云成像仪 (ICI) 等仪器收集的点数据。对于中间时间尺度,卷积长短期记忆 (LSTM) 网络和 U-Net 均使用来自 NOAA 地球静止卫星云图集合的图像进行训练。最后,组合 U-Net 和自动编码器神经网络用于训练由 HPC 数值天气预报 (NWP) 模型模拟的大气预测器以进行长期预测。NWP 会产生许多 TB 的数据,因此,使用这些神经网络是优化其预测能力的理想选择。本研究利用了多种 HPC 资源。其中包括由四个 NVIDIA Tesla V100 GPU 组成的内部 GPU 节点以及毛伊高性能计算中心 (MHPCC) 的资源。结果表明,在几乎所有情况下,这些预测技术都优于持久性,而且偏差很小。使用 HPC 和 DL 推理实时进行预测的能力是未来的重点,将在会议上报告。1. 简介大气衰减和失真降低了太空激光和监视应用的功效。特别是,云层可以部分或完全遮挡目标,并阻止或要求降低光通信系统的数据速率。但是,通过准确表征和预测大气影响,可以减轻许多负面影响。本研究的目的是开发和完善一种最先进的大气预测系统,该系统可生成高分辨率的大气衰减预测,以支持太空激光和监视应用的决策辅助。为了实现这一目标,HPC 和 AI 的进步与数 TB 的高分辨率地面和太空大气数据集合相结合。多种 HPC 资源用于处理本研究所需的地面和卫星数据,并使用四个 NVIDIA Tesla V100 GPU 加速 AI 预测技术的训练和推理。该技术用于进行多时间尺度大气预测:1 小时预测、2 小时以上预测和 48 小时预测。最长 1 小时;最长 2+ 小时;最长 48 小时。最长 1 小时;最长 2+ 小时;最长 48 小时。