允许将本工作的全部或一部分供个人或课堂使用的数字或硬副本授予,而没有费用,只要副本不是盈利或商业优势,并且副本带有此通知和首页上的完整引用。必须尊重他人所拥有的这项作品的组成部分的版权。允许用信用摘要。否则复制或重新出版以在服务器上发布或重新分配到列表,需要事先特定的许可和/或费用。请求权限从permissions@acm.org。
背景:第三级RNA结构的预测对医学领域(例如Messenger RNA [mRNA]疫苗,基因组编辑)和病毒转录物的探索很重要。尽管存在许多RNA折叠软件程序,但很少有研究仅将其关注的源头简化为病毒式Pseudoknotted RNA。这些调控假诺在基因组复制,基因表达和蛋白质合成中起作用。目的:本研究的目的是探索5个RNA折叠引擎,该发动机用于计算最低自由能(MFE)或最大期望准确性(MEA),当应用于先前使用诱变,序列比较,结构探测,结构探测,或核磁共振(NMR)的特定病毒式Pseudoknotted RNA。方法:对本研究中使用的折叠发动机进行了26次实验得出的短伪序列(20-150 nt),使用在测试软件预测准确性时很常见的指标:百分比误差,平均平方误差(MSE),敏感性,敏感性,敏感性,积极的预测值(PPV),Youden的INDEX(Youden's Intex(j)和f 1-score。本研究中使用的数据集来自包含398个RNA的pseudobase ++数据库,该数据库使用PRISMA(系统审查和荟萃分析的首选报告项目)的一组包含和排除标准进行了评估。在Mathews的参数之后,给定RNA序列内的基本配对被认为是正确或不正确的。结果:本文与以前的软件的迭代相比,与较旧的折叠引擎相比,RNA预测引擎具有更高的精度,例如PKISS。本文还报道说,当使用诸如F 1 -SCORE和PPV等指标评估时,MEA折叠软件并不总是以预测准确性的MFE折叠软件,而当应用于病毒式PseudokNotted RNA时。此外,结果表明,如果不应用辅助参数,例如Mg 2+结合,悬挂式最终选项和发夹型惩罚,则热力学模型参数将无法确保准确性。结论:这是将一套RNA折叠发动机套件应用于仅包含病毒式伪KNOTED RNA的数据集的首次尝试。本文报道的观察结果突出了不同的从头算预测方法之间的质量,同时实施了这样一种想法,即对更有效的RNA筛选更有效地了解细胞内热力学是必要的。
摘要背景:贝叶斯基因组预测方法的开发是为了同时将所有基因型标记与一组可用的表型进行拟合,以预测数量性状的育种值,从而考虑到性状遗传结构(标记效应分布)的差异。这些方法还为全基因组关联 (GWA) 研究提供了灵活可靠的框架。本文的目的是回顾用于 GWA 分析的贝叶斯层次和变量选择模型的发展。结果:通过同时拟合所有基因型标记,贝叶斯 GWA 方法隐含地解释了群体结构和经典单标记 GWA 的多重测试问题。使用马尔可夫链蒙特卡罗方法实现的贝叶斯 GWA 方法允许使用从后验分布获得的概率来控制错误率。使用贝叶斯方法进行的 GWA 研究的功效可以通过使用基于先前关联研究、基因表达分析或功能注释信息的先验信息来增强。贝叶斯 GWA 分析适用于多种性状,可通过多性状、结构方程或图形模型深入了解多效性效应。贝叶斯方法还可用于结合基因组、转录组、蛋白质组和其他组学数据,以推断因果基因型与表型的关系,并提出可改善表现的外部干预措施。结论:贝叶斯分层和变量选择方法为基因组预测、GWA、先前信息的整合以及来自其他组学平台的信息整合提供了一个统一而强大的框架,以识别复杂数量性状的因果突变。
本报告是在经合组织关于建设气候和经济复原力的横向项目的背景下编写的。该项目由经合组织秘书长办公室战略远见组完成,并由组长兼战略远见高级顾问 Rafał Kierzenkowski 博士监督。本报告之前的项目由 Dexter Docherty(初级远见分析师)和 Trish Lavery 博士(前战略远见顾问)完成,并得到 Alanna Markle(前初级远见分析师)、Laura Castillo Gutiérrez(初级政策分析师)、Niamh Higgins-Lavery(助理)和 Hilary Landfried(前实习生)的支持,最初由 Duncan Cass-Beggs(前战略远见组组长)监督,然后由 Kierzenkowski 博士监督。工具包的布局由 Julienne DeVita(设计未来专家)设计。
蛋白质是构成生命并介导其内部机制的小成分。它们由氨基酸链组成,这些分子依次定义蛋白质序列。该序列的组成决定了蛋白质的三维结构。在这条线中,蛋白质的功能与其三维结构密切相关。通过实验实验确定蛋白质序列比确定其结构或功能更便宜,更容易。这就是为什么,可用序列的数量高于已知蛋白质结构和功能的数量。深度学习最近允许像实验室实验一样准确地从其序列中快速预测蛋白质结构。最近,蛋白质结构比较工具也提高了速度,从而可以进行大规模分析。蛋白质结构通常比其序列更相似,因此比较结构可以帮助检测远处的进化关系。蛋白质已从共同祖先改编成不同物种,以及它们重复并专门从事单个生物体,以实现相似的功能。是因为这个,如果两种蛋白质在进化上相关,则它们可能会共享诸如其一般功能之类的共同特征。结合了所有这些概念,我们可以从生物体的序列中预测所有未知的蛋白质结构,寻找具有相似结构和已知功能的蛋白质,并推断可能的功能,从而获得许多功能信息。通过结合这些高级方法并与大型数据集合作,研究人员可以从现有数据有价值的信息中提取以了解进化过程。这突出了如何将有关蛋白质结构预测和比较工具的最新进步结合起来,以解锁全新的方法并从笔记本电脑中启发进化机制。
作为温莎的主要电力分销商,ENWIN 从温莎市为本 IRRP 周期完成的需求预测调查中得出了许多预测方法和假设。在住宅方面,研究了几个变量,包括现有和市政及省政府承诺的住房的未来节能、现有家庭供暖电气化、电动汽车采用和里程估计以及公共交通电气化。还考虑了电动交通隔夜充电的影响。其他研究变量包括商业供暖、市政建筑和企业车队的电气化、市政服务扩展以支持人口增长,以及 30 摄氏度以上天数的增加以及伴随的冷却负荷。
b'靶标发现对于药物开发至关重要,尤其是对于复杂的慢性疾病。高通量技术的最新进展和生物医学数据的爆炸式增长凸显了计算药物可药性预测方法的潜力。然而,大多数当前方法依赖于基于序列的特征和机器学习,这通常面临与手工制作的特征、可重复性和可访问性相关的挑战。此外,原始序列和蛋白质结构的潜力尚未得到充分研究。在这里,我们使用深度学习技术利用蛋白质序列和结构,揭示蛋白质序列,特别是预训练的嵌入,比蛋白质结构更具信息量。接下来,我们开发了 DrugTar,这是一种高性能深度学习算法,将来自 ESM-2 预训练蛋白质语言模型的序列嵌入与蛋白质本体相结合以预测药物可药性。DrugTar 实现了曲线下面积和精确召回曲线值高于 0.90,优于最先进的方法。总之,DrugTar 简化了靶标发现,这是开发新型疗法的瓶颈。'
1 新疆大学可再生能源发电与并网教育部工程研究中心,乌鲁木齐 830049,新疆,中华人民共和国。2 新疆电力有限公司电力科学研究院,乌鲁木齐 830049,新疆,中华人民共和国。通讯作者:吴嘉辉 (wjh229@xju.edu.cn)。摘要:随着储能电站领域的蓬勃发展,电池系统状态和故障的预测受到广泛关注。电压作为各类电池故障的主要指示参数,准确预测电压异常对确保电池系统的安全运行至关重要。本研究采用基于 Informer 的预测方法,利用贝叶斯优化算法对神经网络模型的超参数进行微调,从而提高储能电池电压异常预测的准确性。该方法以1分钟为采样间隔,采用一步预测,训练集占总数据的70%,将预测结果的均方根误差、均方误差和平均绝对误差分别降低至9.18mV、0.0831mV和6.708mV。还分析了实际电网运行数据在不同采样间隔和数据训练集比例下对预测结果的影响,从而得到一个兼顾效率和准确性的数据集。所提出的基于贝叶斯优化的方法可以实现更准确的电压异常预测。
讲座-5 再生混凝土骨料及其对混凝土复合材料疲劳性能的影响 (SPS) 讲座-6 复合材料和结构疲劳寿命建模和预测的计算工具 (APV) 讲座-7 实际载荷条件下的疲劳寿命预测 (恒定寿命图) (APV) 第三天,星期三,2024 年 11 月 20 日 讲座-8 基于 GFRP 层压板的蠕变-疲劳相互作用损伤模型