2 选择指南..................................................................20 技术概念....................................................................21 Ewellix 滚柱丝杠简介...............................................21 基本动态承载能力 Ca........................................21 公称疲劳寿命 L10.........................................................................21 使用寿命....................................................................22 当量动态载荷 Fm.............................................................22 基本静态承载能力 C0a.........................................................22 丝杠轴的临界转速 ncr.........................................................23 允许的速度限制 (n d0) 和加速度.........................................................23 效率 η.............................................................................24 反向驱动和制动扭矩 Tb.............................................................................25 脱离扭矩 Tx.............................................................................25 驱动扭矩 Tt.............................................................................25 静态轴向刚度 Rt.............................................................................25 材料、热处理和涂层.............................................................26 工作温度.............................................................................27 丝杠轴屈曲或柱强度 Fc.............................................................27 轴设计.............................................................................28 产品检验和认证.............................................................29 工作环境.................................................................29 轴向游隙和预紧...............................................................30 轴向游隙和预紧...............................................................30 预紧和刚度...............................................................30 预紧扭矩 Tpr................................................................32 预紧扭矩公差...............................................................32 预紧调整.......................................................................34 导程精度和制造公差....................................................36 导程精度....................................................................36 制造公差....................................................................40 计算公式....................................................................44 计算示例....................................................................47
摘要:微机电系统 (MEMS) 为适用于结构健康监测 (SHM) 应用的传感器微型化提供了新技术。在本研究中,基于 MEMS 的传感器,特别是压电微机械超声波换能器 (PMUT),用于评估和监测螺栓连接结构系统的预紧力。为了使螺栓连接正常工作,必须保持适当的预紧力水平。在本研究中,连接到螺栓头部和末端的 PMUT 阵列分别用作一发一收超声波检测 (UT) 场景中的发射器和接收器。主要目标是检测由 PMUT 阵列产生的声波的飞行时间变化 (CTOF),该声波沿螺栓轴在无负载螺栓和使用中的螺栓之间传播。为了模拟螺栓接头的预紧力以及声波通过螺栓传输到一组 PMUT 和从一组 PMUT 传输的声波,我们创建了一组数值模型。我们发现 CTOF 与预紧力的大小呈线性关系。通过与初步实验结果进行比较,验证了数值模型的有效性。
摘要:必须保证在完整的终生中保证锂离子电池的安全性,考虑到由可逆和不可逆的膨胀和降解机制引起的几何变化。对压力分布和梯度的理解是为了优化电池模块的必要条件,并避免局部退化承受与安全相关的电池变化的风险。在这项研究中,用300或4000 n的初始预紧力测量了两个新鲜锂离子袋细胞的压力分布。四个相同的细胞用300或4000 N预紧力在电化学上老化。在衰老期间测量了不可逆的厚度变化。衰老后,研究了可逆的肿胀行为,以得出关于压力分布如何影响衰老行为的结论。开发了一种新型的测试设置,以测量局部细胞厚度,而无需接触并高精度。结果表明,施加的预紧力影响了细胞表面的压力分布和压力梯度。发现压力梯度会影响不可逆肿胀的位置。患有较大压力变化和梯度的位置在厚度上有很大增加,并且在其可逆的肿胀行为方面受到影响。尤其是,所研究的细胞的边缘显示由压力峰引起的厚度较强。
在石油和天然气工业中,螺纹管接头经常用于连接套管柱、钻杆柱或生产和运输立管和管道。接头通常预紧,以便在使用过程中保持密封和安全连接并避免泄漏。锥形螺纹是一种常见的接头,为了在组装时对螺纹接头施加预紧力,需要施加一定的拧紧扭矩。拧紧扭矩加上外部载荷导致接头上出现多轴应力分布,其中螺纹接头充当应力集中器。波浪和洋流等环境会导致动态载荷作用于管道和海上结构。海上结构中最薄弱的环节是管道接头,因为接头螺纹中会产生疲劳裂纹。
在石油和天然气行业,螺纹管接头经常用于连接套管柱、钻杆柱或生产和运输立管和管道。接头通常预紧,以便在使用过程中保持密封和安全连接并避免泄漏。锥形螺纹是一种常见的接头,为了在螺纹接头组装时引入预紧力,需要施加一定的拧紧扭矩。拧紧扭矩加上外部载荷导致接头上出现多轴应力分布,其中螺纹接头充当应力集中器。波浪和洋流等环境会导致动态载荷作用于管道和海上结构。海上结构中最薄弱的环节是管道接头,因为接头螺纹中会产生疲劳裂纹。
角度控制紧固 一种紧固程序,其中紧固件首先通过预先选择的扭矩(称为密合扭矩)紧固,以便将夹紧表面拉到一起,然后通过给螺母额外的测量旋转来进一步紧固。经常使用此方法将螺栓拧紧到其屈服点以上,以确保实现精确的预紧力。使用此方法可能会将短螺栓拉长太多,并且螺栓材料必须具有足够的延展性才能适应所涉及的塑性变形。由于螺栓被拧紧到屈服点以上,因此其重复使用受到限制。[ mech-3 ]
第二单元 螺栓和焊接接头的设计 螺栓接头的设计:螺纹紧固件、螺栓预紧力、螺栓中产生的各种应力。螺栓拧紧的扭矩要求、垫片接头和偏心载荷螺栓接头。焊接接头:搭接和对接焊缝的强度、承受弯曲和扭转的接头。偏心载荷焊接接头。 第三单元 动力传动轴和联轴器 动力传动轴:承受弯曲、扭转和轴向载荷的轴的设计。使用冲击系数承受波动载荷的轴。联轴器:法兰和衬套销联轴器、万向联轴器的设计。
通过dapagliflozin抑制SGLT2可减少近端肾小管中肾小球滤液中葡萄糖的重吸收,并同时减少钠的重吸收,从而导致葡萄糖和渗透二尿液的尿液排泄。dapagliflozin因此增加了钠向远端小管的递送,从而增加了肾小管斜体的反馈并降低了倾斜度内压力。这与渗透性二尿作用相结合,导致体积超负荷,血压降低以及降低预紧和后负载,这可能对心脏重塑和舒张功能产生有益的影响,并保留肾功能。Dapagliflozin的心脏和肾脏益处不仅取决于降血糖效应,而不仅限于DAPA-HF,递送和DAPA-CKD研究中所证明的糖尿病患者。其他影响包括血细胞比容的增加和体重的减轻。
或Fontan循环,血流的方向是从脱氧的血液到氧化的血液。如果涉及相对较大的血管,则可能会导致系统性心室的预紧以及进行性全身动脉氧的饱和度。系统性动脉去饱和具有功能性影响。运动能力降低,中央氰化物可能会导致长期器官损害。据信,这种类型的侧支是由增加的全身静脉压力引起的,并且血液正在寻求低压循环。抵押品像旁路一样起作用。从理论的角度来看,压力增加可能是由于肺动脉回路的阻塞,未成熟的肺循环(6)或肺血管阻力增加引起的。此外,这种侧支的存在似乎也与更常见的肝纤维化有关(7)。在大型全身性静脉与肺静脉侧边造成发生次要红细胞增多和矛盾栓塞的风险增加(8,9)(图1)。