1.9 研究结构…………...……………………………………………………19 1.10 结论……………………..……….…………………………………………... 20 第二章:五旬节运动的起源和津巴布韦新五旬节基督教的出现…………………………………………………………….. 21 2.0 简介………….…………………………………………...…………………………21 2.1 世界上五旬节运动的起源…………………………………………………….22 2.2 使徒运动 …………………………………………………………………... 24 2.2.1 威廉·约瑟夫·西摩(1870-1922)和 1906 年阿苏萨街复兴运动 ….……... 26 2.3 南非的五旬节运动 ………………………………………………………...29 2.4 津巴布韦的五旬节运动 ………......………………………………..…………………..34 2.4.1 津巴布韦其他五旬节教会的诞生 …………...……………………….38 2.4.2 津巴布韦的第二波五旬节运动 ……………………………………….40 2.4.3 津巴布韦第三波五旬节运动 ………………………………………….43 2.5 联合家庭国际教会和先知伊曼纽尔·马坎迪瓦 ……… 44 2.5.1 先知伊曼纽尔·马坎迪瓦和 UFIC 的成立 ……………………….45 2.6 结论 …………………………………………………………………………….51 第 3 章:津巴布韦的宗教与政治 …………………………………………….. 52 3.0 简介 ………………………………………………………………………….. 52 3.1 宗教与政治:它是什么?…………………………………………………………... 53 3.1.a 宗教:概况 ………………………………………………………………………56 3.1.b 政治:概况 ………………………………………………………………………54 3.2 津巴布韦的宗教 …………………………………………………………………60 3.2.1 津巴布韦的宗教难题 ………………………………………………...62 3.3 2000-2008 年津巴布韦的政治背景 ………………………………..65 3.3.1 2008-2012 年津巴布韦的政治背景 ………………………………75 3.4 2000-2008 年津巴布韦的社会经济背景 ……………...79
摘要:后量子安全性密码方案假设量子对手仅收到使用密钥进行计算的经典结果。此外,如果对手可以获得结果的叠加态,则后量子安全方案是否仍然安全尚不清楚。在本文中,我们形式化了一类公钥加密方案,称为 oracle-masked 方案。然后我们为这些方案定义了明文提取程序,该程序模拟了具有一定损失的量子可访问解密 oracle。明文提取程序的构造不需要将密钥作为输入。基于此属性,我们证明了量子随机 oracle 模型 (QROM) 中 Fujisaki-Okamoto (FO) 变换的 IND-qCCA 安全性,并且我们的安全性证明比 Zhandry (Crypto 2019) 给出的证明更严格。我们还给出了 QROM 中 REACT 变换的第一个 IND-qCCA 安全性证明。此外,我们的形式化可以用于证明具有明确拒绝的密钥封装机制的 IND-qCCA 安全性。作为示例,我们在 QROM 中给出了 Huguenin-Dumittan 和 Vaudenay (Eurocrypt 2022) 提出的 T CH 变换的 IND-qCCA 安全性证明。
量子信息通常比经典信息具有更丰富的结构,至少直观上是如此。第一个(但通常是错误的)想法是相位和幅度是连续的,并且量子信息可能能够存储比经典信息多出指数或无限多的信息;但这始终不正确 1 。由于经典信息和量子信息具有截然不同的性质,学界在不同背景和方向研究它们之间的区别,包括建议辅助量子计算[NY04、Aar05、Aar07、AD14、NABT14、HXY19、CLQ19、CGLQ20、GLLZ21、Liu22]、QMA 与 QCMA(即具有量子或经典见证的量子 NP)[AN02、AK07、FK18、NN22]、量子与经典通信复杂性[Yao93、BCW98、Raz99、AST + 03、BYJK04、Gav08] 等等。理解它们之间差异的一种方法是研究单向通信复杂度:即 Alice 和 Bob 想要用他们的私有输入联合计算一个函数,但 Alice 和 Bob 之间只允许进行一次量子/经典通信。在众多研究中,Bar-Yossef、Jayram 和 Kerenidis [ BYJK04 ] 展示了量子和经典单向通信复杂度之间的指数分离,即所谓的隐藏匹配问题。另一种方法是研究 QMA 与 QCMA 。2007 年,Aaronson 和 Kuperberg [ AK07 ] 展示了关于黑盒量子幺正的黑盒分离,而关于经典预言机的相同分离仍是一个悬而未决的问题。十多年后,Fefferman 和 Kimmel [ FK18 ] 使用分布式就地证明了第二种黑盒分离
为任何软件工具,固件或类似的辅助手段提供非歧视性访问,以确保备用电池的全部功能以及在更换期间和之后安装的设备的全部功能; 在制造商,进口商或授权代表的免费访问网站上提供有关设备所有者通知和授权替换电池电池的通知和授权的程序的描述;该程序应允许远程提供通知和授权; 在提供对软件工具,固件或类似辅助手段的访问权限之前,制造商,进口商或授权代表只需收到设备所有者的通知和授权即可。也可以通过所有者的明确书面同意书来提供此类通知和授权; 制造商,进口商或授权代表应在收到请求后的3个工作日内提供对软件工具,固件或类似辅助手段的访问权限,并在适用的情况下进行通知和授权。
摘要。本文在叠加访问模型中形式化了明文感知概念,在该模型中,量子对手可以在量子设备中实现加密预言机并对解密预言机进行叠加查询。由于对手可以通过各种可能的方式访问解密预言机,我们提出了六种安全定义来捕捉每种访问方式的明文感知概念。我们研究了这些定义之间的关系,并提出了各种蕴涵和非蕴涵。经典地,最强的明文感知概念 (PA2) 伴随着选择明文攻击下的不可区分性 (IND-CPA) 概念,产生了选择密文攻击下的不可区分性 (IND-CCA) 概念。我们表明,当针对 IND-qCCA 概念(Boneh-Zhandry 定义,Crypto 2013)时,PA2 概念不足以显示上述关系。然而,我们提出的具有叠加解密查询的后量子 PA2 概念实现了这一含义。关键词。明文感知,后量子安全,公钥加密
总结优点和缺点。 讨论始终在友好的气氛中进行。 首先,学生各自思考主题,然后两人一组交换意见。 *时间分配得恰到好处,没有浪费任何时间,因此学生的思考不会被打断,并能不断加深。 与全班同学分享 (3)在人工智能普及的社会里,什么对于人类来说是重要的? 在开始写作之前,让每一对学生在 jam 板上进行工作。
*频率,响应率和结果度量应通过风险类别进行报告,如果有足够的数量可用,则应通过指示的特定遗传病变。†主要基于在经过跨治疗的患者中观察到的结果。根据可测量残留疾病分析的结果,在治疗过程中可能会发生变化。•并发套件和/或FLT3基因突变不会改变风险分类。§AML被归类为不良风险。||仅影响Cebpa基本亮氨酸拉链的框内突变,无论它们是否以单相关还是双重突变的形式出现,都与有利的结果有关。¶(t (9; 11)的存在P21.3; Q23.3)优先于罕见的,并发的不良风险基因突变。#Eccluding KMT2A部分串联复制(PTD)。**复合核型:在没有其他类别定义的重复遗传异常的情况下,$ 3无关的染色体异常;不包括三个或三个或多个三分之一的高二倍体核型(或多个多核),没有结构异常。††单粒核型:存在两个或更多不同的单色((不包括X或Y(Y(Y(Y(Y))),或一个单个常染色体单子弹结合使用,与至少一个结构性染色体异常相结合,不包括核心结合因子AML)。‡‡目前,如果这些标记与有利的风险AML亚型共发生,则不应将这些标记用作不良预后标记。从参考文献6ATP53在变异等位基因部分至少为10%处的ATP53突变,与TP53等位基因状态(单或双重突变无关; TP53突变与AML与复合和单核核型显着相关。
A prominent academic journal in the field of cancer immunotherapy has adopted the non-clinical research results of SAIL66, which uses the Dual-Ig technology, a unique antibody engineering technology made by Chugai Pharmaceutical, Non-clinical research suggests that SAIL66 has high selectivity for CLDN6 (claudin 6), and that it may exhibit a higher antitumor effect compared to conventional T-cell engagers by costimulating CD3和CD137目前,正在对CLDN6阳性固体癌
This research was conducted by the RIKEN TRIP Initiative, and was conducted by the Japan Society for the Promotion of Science (JSPS) Science Research Funded Funded Research Project (S), "New Generation Magnetic Induction in Magnetic Conductors (Principal Investigator: Tokura Yoshinori, 23H05431)," and the Basic Research (A) "Theoretical Research on Quantum Nonlinear Response (Principal Investigator: Naganaga Naoto, 24H00197)," and the Academic Change Area Research (A) "Theory of Chimeric Quasiparticles (Principal Investigator: Murakami Shuichi, 24H02231)," and the Japan Science and Technology Agency (JST) Strategic Creative Research Promotion Project CREST "Electronic Quantum Phase Control Using Nanospin Structures (Principal Investigator: Naganaga Naoto, JPMJCR1874)"这一事件得到了针对Skyrmion的新拓扑磁科学的支持(主要研究者:U Shuzhen,JPMJCR20T1)。主持人/机构计数器 *请与主持人联系以获取有关研究内容的信息。 Riken研究人员Max T. Birch,基础科学专科研究员,密切相关的量子传导团队,新兴材料科学中心,Riken Research Institute,团队负责人Tokura Yoshinori(东京/东京大学/东京大学教授)