1。引言认知表现在正常衰老期间会下降,并且与大脑结构和生理学的变化有关(Balsterstos等,2009; Baudry,2009)。已经提出了一系列干预措施来抵消这种下降。这样的干预是基于计算机的认知培训(CCT)(Shah等,2017; Willis和Belleville,2016)。尽管由于其异质性,很难从现有文献中得出牢固的结论,但每周三次的小组会议似乎是最佳的。此外,多模式训练似乎最有益于将改进到未直接培训的任务(Lampit等,2014; Walton等,2019)并获得长期益处(Cheng等,2012)。CCT的一个优点是它很容易适应各个性能水平。自适应训练方案促进动机(Kueider等,2012),这是CCT结果尤其重要的因素,从而导致转移效应和训练增长的增加(Carretti等,2011; Jaeggi等,2014; Peter等,2014; Peter等,2018; Zhao等,2018; Zhao等,2018)。
非侵入性神经调节技术,包括经颅直流电刺激 (tDCS),已被证明可以调节神经元功能,并用于认知神经科学和治疗神经精神疾病。在这种情况下,动物模型提供了一种强大的工具来识别 tDCS 的神经生物学作用机制。然而,找到一个易于使用且允许各种刺激参数的电流发生器可能很困难和/或昂贵。在这里,我们介绍了 Open-tES 设备,这是一个在协作平台 Git-Hub 上共享的知识共享许可 (CC BY、SA 4.0) 下的项目。该电流发生器允许实现 tDCS(和其他类型的刺激),适用于啮齿动物,易于使用且成本低廉。已经进行了特性分析以测量所输送电流的精度和准确度。我们还旨在将其效果与临床试验中使用的商业刺激器(DC-Stimulator Plus,Neuro-Conn,德国)进行比较。为了实现这一目标,我们进行了一项行为研究,以评估其在减少小鼠抑郁相关行为方面的功效。刺激器的精度和准确度分别优于 250 nA 和 25 nA。本研究对小鼠进行的行为评估未发现临床试验中使用的商业刺激器和 Open-tES 设备之间存在任何显著差异。刺激器的准确度和精确度确保了刺激的高可重复性。该电流发生器是一种可靠且廉价的工具,可用于非侵入性脑电刺激领域的临床前研究。
