背景:注意缺陷多动症(ADHD)是儿童中最常见的神经系统发育障碍之一,睡眠障碍(SDS)是ADHD儿童的常见合并症。目前在学龄前儿童(4-6岁)的ADHD儿童中没有SD的药理治疗选择。重复的经颅磁刺激(RTMS)是一种新型的非侵入性神经调节技术。本研究探讨了RTMS对ADHD的学龄前儿童合并症SD的有效性。方法:为这项研究招募了ADHD和合并症SD的三十五名儿童。将儿童分为父母行为管理培训(PBMT)组(n = 19),重复的经颅磁刺激与父母行为管理训练组相结合(n = 16)。两组接受了8周的治疗。使用中国儿童的睡眠习惯问卷评估儿童的SD分数,在开始之前,结束前和干预结束后4周之前测量了中国儿童的睡眠习惯问卷,并用于衡量效果。使用反复测量的方差分析比较了组内差异,并使用独立的样品t-检验和曼恩 - 惠特尼U检验比较组间差异。结果:PBMT组和RTMS结合PBMT组都显着改善了患有ADHD的学龄前儿童的SD(P <.001)(p <.001),但是在RTMS中,RTMS的效果与PBMT组更为明显(P <.001)(p <.001),并且比PBMT Group(PBMT Group)更长。结论:重复的经颅磁刺激是一种有希望的非药物疗法,可改善ADHD学龄前儿童的SD。
摘要。颅骨突变是指一个或多个颅骨缝合线的早期融合,导致全球1:2,500个出生的颅面异常。在大多数情况下(85%),颅骨突变为零星异常(非综合征颅骨突出),而在其他情况下(15%)作为综合征(综合征颅骨症)。综合症患者与具有单缝线冲突的患者通常具有更严重的症状。 颅突的最常见综合症包括Pfeiffer,Apert,Crouzon,Jackson-Weiss,Muenke和Boston Type MSX2相关综合征。 颅突的主要基因突变涉及FGFR1,FGFR2,FGFR3,Twist1和MSX2,该基因编码影响颅骨形态发生的关键因素。 正如本综述所讨论的那样,主要的治疗方法是手术,并且治疗的类型取决于事件的重力。综合症患者与具有单缝线冲突的患者通常具有更严重的症状。颅突的最常见综合症包括Pfeiffer,Apert,Crouzon,Jackson-Weiss,Muenke和Boston Type MSX2相关综合征。颅突的主要基因突变涉及FGFR1,FGFR2,FGFR3,Twist1和MSX2,该基因编码影响颅骨形态发生的关键因素。正如本综述所讨论的那样,主要的治疗方法是手术,并且治疗的类型取决于事件的重力。
炎性肌细胞肿瘤(IMT)是1939年首次描述的罕见病理实体。此病变最常见于肺部,但是涉及其他系统的病例,例如称为颅内IMT(IIMT)的中枢神经系统。诊断目前依赖于病理结果,因为缺乏特征成像变化。手术切除是一种有效的治疗方法,尽管该疾病是侵入性并且可能会复发。以前的文献报道了IMT组织中高水平的编程死亡1(PD-1)表达,这表明免疫疗法可能对这种情况有效。在本案报告中,我们提出了一名中年男性,他在IIMT切除手术后接受了PD-1抑制剂和溶瘤腺病毒(AD-TD-NSIL12)治疗。这种成功的方法为治疗IIMT提供了新的方向。
纤维肌痛综合征(FMS)是一种反复出现的疼痛状况,可能具有挑战性。经颅直流刺激(TDC)已成为减轻FMS疼痛的有希望的非侵入性治疗选择,但是其有效性的机制尚未完全理解。在本文中,我们讨论了研究TDC对FMS的镇痛作用的最新研究,并讨论了潜在机制。tdcs可以通过影响大脑中的神经元活性,改变皮质兴奋性,改变区域大脑血流,调节神经传递和神经蛋白流经肿瘤,并诱导神经性塑性来发挥其镇痛作用。总体而言,证据指出,TDC是通过多种基础机制对FMS的潜在安全且有效的缓解疼痛选择。本文详细概述了我们对TDC基础机制的持续知识,并强调了进一步研究的可能性,以改善TDC作为疼痛管理工具的临床实用性。
头骨变异的胚胎学起源在于颅骨的复杂发育,颅骨主要由神经嵴细胞和中胚层组织产生。神经嵴细胞源自外胚层,在早期胚胎发育过程中迁移形成大部分面部骨骼,包括上颌骨、下颌骨和颧骨,以及部分神经颅骨。中胚层有助于枕骨和部分后颅骨的形成。随着头骨的发育,骨骼最初由缝线分开,以方便儿童时期的生长。当这些缝线过早闭合,扰乱正常的颅骨扩张时,就会出现颅骨形状的变化,如颅缝早闭。这可能导致颅骨形状异常,如舟状头畸形(长而窄的颅骨)或短头畸形(宽而短的颅骨)[6]。此外,神经嵴迁移和中胚层相互作用的时间和模式会影响个体颅面特征,导致个体之间的正常差异,包括眼眶、鼻腔和下颌的大小和形状差异。这一发育过程的中断,无论是遗传的还是环境的,都可能导致先天性异常,如唇腭裂,或导致性别二态性和头骨形态的种族差异。
目的颅颌面重塑治疗颅缝早闭的主要目的在于矫正畸形,但其可能引起的颅压增高,以及神经认知损伤和神经心理障碍也不容忽视。额眶前移术(FOA)后的复发率似乎很高,但迄今为止,尚无客观的测量技术。本研究旨在利用计算机辅助设计(CAD)和计算机辅助制造(CAM)创建个性化的3D打印模板来矫正颅缝早闭,并在随访中使用术后3D照片头部和面部表面扫描来量化FOA的结果。方法作者纳入了2014年至2020年期间接受FOA的所有患者,所有患者均使用个性化的基于CAD/CAM的3D打印模板,并在术后随访中使用3D照片面部和头部扫描。自 2016 年以来,作者常规计划在患侧基于 CAD 的 FOA 矫正基础上额外进行 3 毫米的“过度矫正”。将 FOA 矫正的虚拟计划眶上角与术后 3D 照片头部和面部表面扫描测量的术后眶上角进行比较。主要结果是计划的 CAD/CAM FOA 矫正与基于 3D 照片实现的矫正之间的差异。次要结果包括有和没有“过度矫正”的结果、手术时间、失血量和发病率。结果短期随访(术后平均 9 个月;14 名患者)显示计划眶上角和实现的眶上角之间有 12° 的差异。长期随访(平均 23 个月;8 名患者)显示眶上角停滞不前,复发率没有显著增加。术后患侧额外计划过度矫正(3 毫米)后,眶上角平均变化量为 11°,而未过度矫正时为 14°。整个队列(n = 36)的围手术期和术后并发症发生率很低,平均(SD)术中失血量为 128(60)毫升,平均(SD)输注红细胞量为 133(67)毫升。结论术后在 3D 照片上测量应用的 FOA 是一种可行且客观的手术结果评估方法。可以在术后 3D 照片上分析使用 CAD/CAM 计划的 FOA 矫正与实际矫正之间的差异。将来,借助这些技术,可能计算出 FOA 后避免患侧复发所需的“过度矫正”量。
引用:Shaurya Mahajan。等。“与经颅光生物调节(TPBM)相连的个性化重复经颅磁刺激(PRTMS®),用于共发生的创伤性脑损伤(TBI)和创伤后应激障碍(TBI)和创伤后应激障碍(PTSD)”。ACTA科学神经病学8.3(2025):20-27。
背景:颅咽管瘤 (CP) 与关键神经血管结构的接近可导致一系列神经和内分泌并发症,从而给手术治疗带来困难。在本综述中,我们研究了与 CP 有关的分子和遗传标记、它们在致瘤途径中的参与以及它们对 CP 预后和治疗的影响。方法:我们对与 CP 有关的相关文章、临床试验和分子摘要进行了重点回顾。结果:遗传和免疫标记在不同类型的 CP 中表现出不同的表达。BRAF 与乳头状 CP (pCP) 的肿瘤发生有关,而 CTNNB1 和 EGFR 在釉质瘤性 CP (aCP) 中经常过度表达,VEGF 在 aCP 和复发性 CP 中过度表达。抑制这些途径的靶向治疗方式可以缩小或阻止 CP 的进展。此外,EGFR 抑制剂可能会使肿瘤对放射疗法敏感。这些药物在脑性瘫痪的医疗管理和新辅助治疗中显示出良好的前景。免疫疗法,包括抗白细胞介素 6 (IL-6) 药物和干扰素治疗,在控制肿瘤生长方面也非常有效。正在进行的脑性瘫痪临床试验有限,但正在测试 BRAF/MET 抑制剂和 IL-6 单克隆抗体。结论:遗传和免疫标记在脑性瘫痪的不同亚型中表现出不同的表达。目前几种分子疗法在治疗这种疾病方面取得了一些成功。额外的临床试验和靶向疗法对于改善脑性瘫痪患者的预后非常重要。
背景:当今医学成像和计算资源的可用性为脑生物力学的高保真计算建模奠定了基础。脑及其环境的特点是组织、血液、脑脊液 (CSF) 和间质液 (ISF) 之间存在动态而复杂的相互作用。在这里,我们设计了一个用于颅内动力学建模和模拟的计算平台,并根据脑脉动的临床相关指标评估模型的有效性。方法:我们开发了人类脑环境中完全耦合的心脏诱发的脉动性脑脊液流和组织运动的有限元模型。三维模型几何形状源自磁共振图像 (MRI),具有高水平的细节,包括脑组织、脑室系统和颅蛛网膜下腔 (SAS)。我们将器官尺度的脑实质建模为一种由细胞外液网络渗透的弹性介质,并将 SAS 和脑室中的脑脊液流动描述为粘性流体运动。分布在脑实质中的脉动净血流代表心动周期中的血管扩张,是运动的驱动因素。此外,我们还研究了模型变化对一组临床相关感兴趣量的影响。结果:我们的模型预测了脑脊液填充空间和多孔弹性实质在 ICP、脑脊液流量和实质位移方面的复杂相互作用。ICP 的变化主要由其时间幅度决定,但脑脊液填充空间和实质的空间变化都很小。受 ICP 差异的影响,我们发现脑室和颅脊脑脊液流量较大,颅 SAS 中有一些流量,脑实质中存在小的脉动 ISF 速度。此外,该模型预测在心动周期开始时,实质组织在背部方向会呈漏斗状变形。结论:我们的模型准确描述了颅内压、脑脊液流动和脑组织运动之间的复杂相互作用,与临床观察结果相符。它为详细研究生理和病理生理条件下颅内耦合动力学和相互作用提供了一个定性和定量平台。
就社会、经济和公共卫生影响而言,精神和认知障碍是我们面临的最具挑战性的疾病之一。这一挑战在很大程度上源于它们的异质性和复杂性——异质性在于这些疾病在个体间的表现差异很大,复杂性在于缺乏客观的生物标志物,对潜在的神经生理机制的理解有限。与精神和认知障碍有关的网络通常包括前额叶区域(1,2),这是进化最快的区域,在非人类动物中建模尤其具有挑战性(3)。为了治疗性地调节这些功能失调的回路,我们必须全面了解它们的病理生理学。鉴于非侵入性方式的分辨率和特异性相对较低,在人类中完成这一“回路解剖”任务的最精确工具是电生理记录和颅内电极刺激。在这里,我们应用这种方法来研究一种常见且负担沉重的疾病——抑郁症的神经生理学基础(4)。