颅内动力学的客观传统模型无法捕获颅内压(ICP)脉冲的几个重要特征。实验表明,在局部振幅最小值上,ICP脉冲通常在动脉血压(ABP)脉冲之前,而颅骨是一种带滤波器的带滤波器,以心脏速度为中心,用于ICP脉冲,并以ABP脉冲为中心,这是大脑Windkessel机制。这些观察结果与现有的压力容量模型不一致。探索这些问题的方法,作者通过使用简单的电气储罐电路对ABP和ICP脉冲进行了建模,并通过使用自动回流(ARX)建模将电路的动力学与狗的生理数据进行了比较。结果作者的ARX分析显示了犬颅颅骨和脉冲抑制之间的一致性,他们使用电路和颅骨之间的类比来检查脉冲抑制的动力学。结论生理数据和电路动力学之间的对应关系表明,大脑Windkessel由脑实质和CSF的节奏运动组成,它不断反对收缩和舒张血流。已通过流动敏感的MRI记录了这种运动。在热力学术语中,脑动脉灌注的直流电流(DC)功率驱动平滑的毛细管流动和交流电流(AC)功率分流,通过CSF脉冲能量到静脉。这表明脑积水和相关疾病是CSF路径阻抗的疾病。阻塞性脑积水是高分辨率引起的高CSF路径阻抗的结果。正常压力脑积水(NPH)是由于低惯例和高依从性而导致的高CSF路径阻抗的结果。低压脑积水是高电阻和高依从性引起的高CSF路径阻抗的结果。心室肿大是一种自适应生理反应,可增加CSF路径体积,从而降低CSF路径的耐药性和阻抗。伪肿瘤脑是具有正常CSF路径阻抗的高直流功率的结果。CSF分流是一种辅助Windkessel,它会排出能量(从而降低ICP),并降低CSF路径的阻力和阻抗。Cushing的反射是极端的辅助Windkessel,它保持直流功率(动脉高血压)并降低交流电源(心动过缓)。Windkessel理论是一种用于研究通过颅骨流动的热方法方法,它指出了对脑积水和相关疾病的新理解。
代码 描述 尺寸 FGTISS/M2 表面组织 FGCMxx/KG 短切纤维垫 300 和 450gm/m2 FGWRxx/KG 编织粗纱(单向和双向) 450 和 600 gm/m2 缝织物 FG-缝织物 各种缝织物 布 FGCSPI/xx 平纹玻璃布 140、200、300gm/m2 FGCTWL-xx 斜纹玻璃布 200 gm/m2 CFC-200PL/M2 碳纤维平纹 200 gm/m2 CFC-200TWL/M2 碳纤维斜纹 200 gm/m2 注意 +-140gm/m2 = 4 oz, +-200gm/m2 = 6oz, +-300gm/m2 = 10盎司布
我们有一种天真的古典直觉,认为我们最好的理论应该能够告诉我们物理过程的持续时间。受这种简单的古典图景的启发,物理学家们问道,量子粒子穿过经典禁能垒需要多长时间?换句话说,量子隧穿时间的正确表达式是什么?与经典问题不同,这个问题似乎没有一个直接的答案,并在物理学文献中引发了广泛的争论。物理学家提出了各种量子隧穿时间的表达式。一些跟踪隧穿系统的内部特性,而另一些则依赖于隧穿粒子和外部物理系统之间的耦合。一般来说,它们都提供了不同的值——只在某些限制内相一致——并且它们在大多实用的基础上相互权衡。然而,一些作者仍然在谈论,好像有一个明确而独特的表达可以找到,或者至少好像一些提出的表达本质上比其他表达更有意义。许多人认为,这种明显的歧义源于量子力学对待时间的一般方式:将其视为参数,而非算符。其他人则强调了这场争论的解释维度,甚至认为隧穿时间在量子力学的标准解释中毫无意义。然而,这种混乱和歧义只存在于标准的“正统”或“哥本哈根”解释中——所有考虑德布罗意-玻姆“导波”解释传统形式的作者都同意,这种解释为隧穿时间提供了一个清晰明确的表达,其中量子态由受波函数演化引导的物理德布罗意-玻姆粒子组成。这引发了人们的猜测:量子隧穿时间的实验测试是否可以作为传统形式的德布罗意-玻姆理论的实验测试。因此,关于量子隧穿时间的文献现状自然而然地引出了三个物理和哲学问题。首先,关于隧穿时间的困惑是否真的源于量子力学中更普遍的“时间问题”——即时间缺乏算符这一事实?其次,隧穿时间在量子力学的标准解释中真的是一个毫无意义的概念吗?如果是,为什么?最后,原则上,是否可以使用量子隧穿时间的实验测试作为德布罗意-玻姆解释的实验测试?本文旨在依次回答每个问题。自始至终,我都局限于德布罗意-玻姆理论的传统版本,其中隧穿时间是清晰明确的——其他关于导航波程序所依据的本体论的提议,虽然本身就很吸引人,但与我要提出的概念点无关。在本文的前半部分,即第 2 节中,我概述了现有的关于量子隧穿时间的文献。第 2.1 节解释了隧穿时间讨论所基于的物理场景。在第 2.2 节中,我描述了时间在量子力学中的一些特征,并展示了这些特征是如何被用来将量子隧穿时间的混乱归咎于量子力学中更普遍的“时间问题”。在第 2.3 节中,我描述了隧穿时间与量子力学解释之间的联系,并展示了这种联系是如何被用来激发两种主张的:关于标准解释中隧穿时间的意义的主张,以及关于使用隧穿时间作为 Bohmian 计划的“关键”实验测试的可能性的主张。在本文的后半部分,即第 3 节,我提出了自己的分析,为上述三个问题的答案辩护。我首先在隧穿问题和众所周知的双缝实验之间建立了一个类比。我指出,尝试建立特定于传输粒子的隧穿时间类似于尝试确定检测到的粒子是通过双缝的左缝还是右缝(第 3.1 节)。这个简单而有力的类比将构成本文其余部分的概念基础。接下来,将在第 3.2、3.3 和 3.4 节中回答这三个问题。至于围绕量子隧穿时间的明显混乱和模糊性是否可以追溯到量子力学中更普遍的时间问题,我认为“不”:混乱的真正根源是叠加,因此,即使时间可以用算符表示,隧穿时间在量子力学的标准解释中也是模糊和有争议的(第 3.2 节)。至于隧穿时间在量子力学的标准解释中是否毫无意义:我认为它与询问粒子是通过双缝实验的左缝还是右缝一样毫无意义(第 3.3 节)。最后,关于是否可能在原则上将量子隧穿时间用作德布罗意-玻姆解释的实验测试:我旨在提供一个简单的解释,说明为什么这是不可能的。不可能通过实验测量德布罗意-玻姆理论预测的隧穿时间,就像不可能测量粒子是通过左缝还是右缝而使屏幕上的干涉图案保持完整(第 3.4 节)一样。这些答案并不全是新的。文献中已经暗示了每一个,但它们尚未联系在一起——当它们出现时,它们被插入更长的简短评论中我描述了时间在量子力学中的一些特征,并展示了这些特征是如何被用来将量子隧穿时间的混乱归咎于量子力学中更普遍的“时间问题”。在第 2.3 节中,我描述了隧穿时间与量子力学解释之间的联系,并展示了这种联系是如何被用来激发两种主张的:关于隧穿时间在标准解释中的意义的主张,以及关于使用隧穿时间作为 Bohmian 计划的“关键”实验测试的可能性的主张。在本文的后半部分,即第 3 节,我提出了自己的分析,为上述三个问题的答案辩护。我首先在隧穿问题和众所周知的双缝实验之间建立了一个类比。我表明,尝试建立特定于透射粒子的隧穿时间类似于尝试确定检测到的粒子是通过双缝的左侧通道还是右侧通道(第 3.1 节)。这个简单而有力的类比将构成本文其余部分的概念基础。接下来,我们将在第 3.2、3.3 和 3.4 节中回答这三个问题。至于围绕量子隧穿时间的明显混乱和模糊性是否可以追溯到量子力学中更普遍的时间问题,我认为“不能”:混乱的真正根源是叠加,因此,即使时间可以用算符表示,隧穿时间在量子力学的标准解释中也是模糊和有争议的(第 3.2 节)。至于隧穿时间在量子力学的标准解释中是否毫无意义:我认为它的意义不亚于询问粒子是通过双缝实验的左缝还是右缝(第 3.3 节)。最后,至于原则上是否可以将量子隧穿时间用作德布罗意-玻姆解释的实验测试:我旨在提供一个简单的解释,说明为什么这是不可能的。不可能通过实验测量德布罗意-玻姆理论预测的隧穿时间,就像不可能测量粒子是通过左缝还是右缝而使屏幕上的干涉图样保持完整(第 3.4 节)一样。这些答案并不全是新的。文献中已经暗示了每一个,但它们尚未联系在一起——而且它们确实出现的地方,都是作为简短的评论插入到更长的我描述了时间在量子力学中的一些特征,并展示了这些特征是如何被用来将量子隧穿时间的混乱归咎于量子力学中更普遍的“时间问题”。在第 2.3 节中,我描述了隧穿时间与量子力学解释之间的联系,并展示了这种联系是如何被用来激发两种主张的:关于隧穿时间在标准解释中的意义的主张,以及关于使用隧穿时间作为 Bohmian 计划的“关键”实验测试的可能性的主张。在本文的后半部分,即第 3 节,我提出了自己的分析,为上述三个问题的答案辩护。我首先在隧穿问题和众所周知的双缝实验之间建立了一个类比。我表明,尝试建立特定于透射粒子的隧穿时间类似于尝试确定检测到的粒子是通过双缝的左侧通道还是右侧通道(第 3.1 节)。这个简单而有力的类比将构成本文其余部分的概念基础。接下来,我们将在第 3.2、3.3 和 3.4 节中回答这三个问题。至于围绕量子隧穿时间的明显混乱和模糊性是否可以追溯到量子力学中更普遍的时间问题,我认为“不能”:混乱的真正根源是叠加,因此,即使时间可以用算符表示,隧穿时间在量子力学的标准解释中也是模糊和有争议的(第 3.2 节)。至于隧穿时间在量子力学的标准解释中是否毫无意义:我认为它的意义不亚于询问粒子是通过双缝实验的左缝还是右缝(第 3.3 节)。最后,至于原则上是否可以将量子隧穿时间用作德布罗意-玻姆解释的实验测试:我旨在提供一个简单的解释,说明为什么这是不可能的。不可能通过实验测量德布罗意-玻姆理论预测的隧穿时间,就像不可能测量粒子是通过左缝还是右缝而使屏幕上的干涉图样保持完整(第 3.4 节)一样。这些答案并不全是新的。文献中已经暗示了每一个,但它们尚未联系在一起——而且它们确实出现的地方,都是作为简短的评论插入到更长的并声称可以使用隧穿时间作为 Bohmian 方案的“关键”实验测试。在本文的后半部分,即第 3 节中,我将提出自己的分析,为上述三个问题提供答案。我首先在隧穿问题和众所周知的双缝实验之间建立类比。我表明,尝试建立特定于透射粒子的隧穿时间类似于尝试确定检测到的粒子是通过双缝的左侧通道还是右侧通道(第 3.1 节)。这个简单而有力的类比将构成本文其余部分的概念基础。然后在第 3.2、3.3 和 3.4 节中回答这三个问题。至于围绕量子隧穿时间的明显混乱和模糊性是否可以追溯到量子力学中更普遍的时间问题,我认为“不能”:混乱的真正根源是叠加,因此,即使时间可以用算符表示,隧穿时间在量子力学的标准解释中也是模糊和有争议的(第 3.2 节)。至于隧穿时间在量子力学的标准解释中是否毫无意义:我认为它与询问粒子是否穿过双缝实验的左缝或右缝一样毫无意义(第 3.3 节)。最后,至于原则上是否可以将量子隧穿时间用作德布罗意-玻姆解释的实验测试:我旨在提供一个简单的解释,说明为什么这是不可能的。不可能通过实验测量德布罗意-玻姆理论预测的隧穿时间,就像不可能测量粒子是通过左缝还是右缝而使屏幕上的干涉图样保持完整(第 3.4 节)一样。这些答案并不全是新的。文献中已经暗示了每一个,但它们尚未联系在一起——而且它们确实出现的地方,都是作为简短的评论插入到更长的并声称可以使用隧穿时间作为 Bohmian 方案的“关键”实验测试。在本文的后半部分,即第 3 节中,我将提出自己的分析,为上述三个问题提供答案。我首先在隧穿问题和众所周知的双缝实验之间建立类比。我表明,尝试建立特定于透射粒子的隧穿时间类似于尝试确定检测到的粒子是通过双缝的左侧通道还是右侧通道(第 3.1 节)。这个简单而有力的类比将构成本文其余部分的概念基础。然后在第 3.2、3.3 和 3.4 节中回答这三个问题。至于围绕量子隧穿时间的明显混乱和模糊性是否可以追溯到量子力学中更普遍的时间问题,我认为“不能”:混乱的真正根源是叠加,因此,即使时间可以用算符表示,隧穿时间在量子力学的标准解释中也是模糊和有争议的(第 3.2 节)。至于隧穿时间在量子力学的标准解释中是否毫无意义:我认为它与询问粒子是否穿过双缝实验的左缝或右缝一样毫无意义(第 3.3 节)。最后,至于原则上是否可以将量子隧穿时间用作德布罗意-玻姆解释的实验测试:我旨在提供一个简单的解释,说明为什么这是不可能的。不可能通过实验测量德布罗意-玻姆理论预测的隧穿时间,就像不可能测量粒子是通过左缝还是右缝而使屏幕上的干涉图样保持完整(第 3.4 节)一样。这些答案并不全是新的。文献中已经暗示了每一个,但它们尚未联系在一起——而且它们确实出现的地方,都是作为简短的评论插入到更长的我认为“不”:真正的混乱根源是叠加,因此即使时间可以用算符表示,隧穿时间在量子力学的标准解释中也是含糊不清且有争议的(第 3.2 节)。至于隧穿时间在量子力学的标准解释中是否毫无意义:我认为它与询问粒子是通过双缝实验的左缝还是右缝一样毫无意义(第 3.3 节)。最后,至于原则上是否可以将量子隧穿时间用作德布罗意-玻姆解释的实验测试:我旨在提供一个简单的解释,说明为什么这是不可能的。实验测量德布罗意-玻姆理论预测的隧穿时间是不可能的,就像测量粒子是通过左缝还是右缝而不使屏幕上的干涉图案保持完整一样(第 3.4 节)。这些答案并不都是新的。文献中已经提到过每一个,但它们还没有联系在一起——即使它们出现了,它们也会作为简短的评论插入到更长的我认为“不”:真正的混乱根源是叠加,因此即使时间可以用算符表示,隧穿时间在量子力学的标准解释中也是含糊不清且有争议的(第 3.2 节)。至于隧穿时间在量子力学的标准解释中是否毫无意义:我认为它与询问粒子是通过双缝实验的左缝还是右缝一样毫无意义(第 3.3 节)。最后,至于原则上是否可以将量子隧穿时间用作德布罗意-玻姆解释的实验测试:我旨在提供一个简单的解释,说明为什么这是不可能的。实验测量德布罗意-玻姆理论预测的隧穿时间是不可能的,就像测量粒子是通过左缝还是右缝而不使屏幕上的干涉图案保持完整一样(第 3.4 节)。这些答案并不都是新的。文献中已经提到过每一个,但它们还没有联系在一起——即使它们出现了,它们也会作为简短的评论插入到更长的
颅内动脉瘤 (IA) 是一个重大的公共卫生问题。在没有合并症且平均年龄为 50 岁的人群中,其患病率高达 3.2%。需要一种有效的方法来识别 IA 高风险受试者,以提供足够的放射学筛查指南并有效分配医疗资源。人工智能 (AI) 因其在基于图像的任务中的出色表现而受到全世界的关注。它可以作为临床环境中医生的辅助手段,提高诊断准确性,同时减少医生的工作量。AI 可以像人类一样执行模式识别、对象识别和问题解决等任务。根据收集的训练数据,AI 可以以半自主的方式协助决策。同样,AI 可以识别可能的诊断,并根据健康记录或影像数据选择合适的治疗方法,而无需任何明确的编程(指令集)。动脉瘤破裂预测是预测建模的圣杯。AI 可以显著改善破裂预测,从而挽救生命和肢体。如今,深度学习 (DL) 在准确检测医学影像中的病变方面显示出巨大潜力,并且已经达到甚至超越了专家级诊断。这是通过增加计算放射组学准确诊断 UIA 的第一步。这不仅可以诊断,还可以建议治疗方案。未来,我们将看到 AI 在 IA 的诊断和管理中发挥越来越大的作用。
条件下,因此缺乏身体准备或对某些症状的清晰感知会导致身体衰竭,甚至死亡。7,8 尽管技术发展为人体工程学设计、软件、硬件和空中交通管制技术带来了进步,对飞行安全产生了积极影响,但人为因素的存在仍然是航空事故的主要原因。9–11 空间定向障碍是很大比例军事航空事故的重要因素。虽然先前的研究分析了事故统计数据,但它们往往存在方法上的缺陷,导致对民用和军用飞机事故的真正原因得出的结论值得怀疑。12,13 特技飞行可以显著改变飞行员的空间定向能力。通过这种方式,应该研究与空中活动相关的人体生理固有因素;颅内压 (ICP) 是一个重要的临床变量,医生和航空航天专业人员仍然无法获得。ICP 是颅腔内的压力。三种成分填充该空间:血液、脑脊液和脑组织,其中一种或多种成分的改变会导致颅内压的变化,14 例如动脉血压的波动。
摘要简介:本研究旨在评估基于光生物调节 (PBM) 的颅脑红外激光刺激 (TILS) 对创伤性脑损伤 (TBI) 患者进行的安全性和可能的治疗效果。方法:11 名参与者经委员会认证的神经病学家进行全面神经系统检查和 MRI 评估后被诊断为 TBI,他们使用 Cytonsys CytonPro-5000 仪器(引导激光控制,聚焦波长为 1064 nm,最大输出功率为 10W,最大光功率密度为 500 mW/cm 2,有效面积直径为 4.5 cm 2)完成了 5 到 8 次 20 分钟的 TILS 疗程。每次 TILS 疗程中,参与者使用预先确定的患者特定坐标接受 250 mW/cm 2 连续激光波照射每个半球。结构成像用于对额叶皮质(Brodmann 区域 10)中的个体治疗目标进行神经导航。本研究的主要安全措施是发生不良事件 (AE) 或严重不良事件 (SAE)。主要疗效结果测量是参与者评定的干预后总体变化评分 (GRC)。次要结果测量包括干预前后进行的一系列神经心理学测试和情绪问卷。结果:参与本研究方案的所有患者均能耐受研究程序,未发生任何 AE 或 SAE。11 名参与者中有 9 名的 GRC 评分有临床显著改善 (≥ + 2)。神经心理学测试和情绪问卷结果也表明了积极的治疗效果。结论:本研究为 TILS 作为 TBI 患者非侵入性临床干预措施的安全性和潜在有效性提供了初步证据。关键词:创伤性脑损伤;经颅红外激光刺激;近红外光疗法;脑刺激。
a 法国马赛艾克斯—马赛大学 INSERM、INS、系统神经科学研究所 b 法国普罗旺斯地区艾克斯—马赛大学、CNRS、LPL c 美国加利福尼亚州洛杉矶南加州大学信号与图像处理研究所 d 意大利国家研究委员会神经科学研究所,意大利帕尔马 e 德国波鸿鲁尔大学心理学系、认知神经科学研究所、Universitätsstraße 150 号,波鸿 44801 f 北京师范大学认知神经科学与学习国家重点实验室和 IDG/麦戈文脑研究中心,北京市海淀区新街口外大街 19 号,100875,中国 g 美国圣地亚哥加利福尼亚大学拉霍亚分校认知科学系 h 美国德克萨斯大学戴尔医学院神经病学系奥斯汀,美国德克萨斯州奥斯汀 i 德克萨斯大学奥斯汀分校神经科学研究所,美国德克萨斯州奥斯汀 j 德克萨斯大学奥斯汀分校穆迪传播学院言语、语言和听力科学系,美国德克萨斯州奥斯汀 k 梅奥诊所生理学和生物医学工程系,美国明尼苏达州罗彻斯特 l 宾夕法尼亚大学心理学系,美国宾夕法尼亚州费城 m 加利福尼亚大学伯克利分校心理学系和海伦·威尔斯神经科学研究所,美国加利福尼亚州 94720 n 加利福尼亚大学伯克利分校海伦·威尔斯神经科学研究所,美国 o 日内瓦大学医学院临床神经科学系,瑞士日内瓦 p 马克斯·普朗克经验美学研究所神经科学系,德国法兰克福 Grüneburgweg 14,邮编 60322 q 纽约大学神经病学系格罗斯曼医学院,纽约东 32 街 145 号 828 室,邮编 10016,美国 r 梅奥诊所神经外科系,罗彻斯特,MN 55905,美国 s 荷兰奈梅亨拉德堡德大学 Donders 大脑、认知和行为研究所 t 荷兰奈梅亨拉德堡德大学医学心理学系,Donders 医学神经科学中心 u 美国印第安纳州布卢明顿印第安纳大学心理与脑科学系、神经科学和认知科学项目 v 荷兰乌得勒支大学脑中心神经病学和神经外科系 w 神经回路和认知实验室,欧洲神经科学研究所哥廷根 - 由德国哥廷根大学医学中心和马克斯·普朗克学会联合发起 x 德国灵长类动物中心感知与可塑性小组,莱布尼茨灵长类动物研究所,德国哥廷根 y 加州大学拉霍亚分校神经科学研究生项目,美国新罕布什尔州汉诺威市 z 达特茅斯学院心理与脑科学系,美国新罕布什尔州 aa 俄勒冈大学人体生理学系,美国 ab Hal ı c ı o ğlu 加州大学拉霍亚分校数据科学研究所,美国圣地亚哥 ac 加州大学拉霍亚分校卡弗里大脑与思维研究所,美国圣地亚哥 ad 中国科学院心理健康重点实验室,北京 ae 中国科学院大学心理学系,北京 af 里昂神经科学研究中心,EDUWELL 团队,INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France ag NatMEG, 卡罗林斯卡学院, 斯德哥尔摩, 瑞典
三维胎儿超声通常用于研究大脑结构的体积发育。迄今为止,只有有限数量的自动程序可用于描绘颅内容积。因此,三维超声图像中的颅内容积测量主要通过手动完成。在这里,我们介绍并验证了一种从三维胎儿超声扫描中提取颅内容积的自动化工具。该程序基于将大脑模型与受试者大脑进行配准。受试者的颅内容积是通过将最终变换的逆应用于大脑模型的颅内掩模来测量的。自动测量结果与同一受试者在两个孕周(即大约 20 和 30 周)的手动描绘结果显示出高度相关性(线性拟合 R 2(20 周)= 0.88,R 2(30 周)= 0.77;组内相关系数:20 周 = 0.94,30 周 = 0.84)。总体而言,自动颅腔容积大于手动划定的颅腔容积(84 ± 16 cm 3 vs. 76 ± 15 cm 3 ;274 ± 35 cm 3 vs. 237 ± 28 cm 3 ),这可能是由于小脑划定的差异所致。值得注意的是,自动测量结果既复制了胎儿大脑生长的非线性模式,也复制了年龄较大胎儿的个体间差异性增加。相比之下,在性别二态性差异的大小方面,手动和自动划定之间存在一些分歧。本文介绍的方法提供了一种相对有效的自动划定胎儿大脑结构(如颅腔容积)体积的方法。它可以用作研究工具,在大型队列中研究这些结构,最终有助于了解胎儿结构性人脑发育。
前面的信息旨在用于非医疗保险确定。Medicare Benefit Policy手册中概述了门诊病人的医疗保险(B部分)药物(Pub。100-2),第15章,第50条药物和生物学。 此外,可能存在国家承保范围确定(NCD)和/或本地覆盖范围确定(LCD),并且在适用的情况下需要遵守这些政策。 本地覆盖范围文章(LCA)也可能出于索赔付款目的而存在,或阐明B部分根据可能自我管理的药物的福利资格。 以下链接可用于搜索NCD,LCD或LCA文档:https://www.cms.gov/medicare-coverage--database-database/search.aspx。 可以根据健康计划的酌情决定其他指示,包括任何前面的信息。100-2),第15章,第50条药物和生物学。此外,可能存在国家承保范围确定(NCD)和/或本地覆盖范围确定(LCD),并且在适用的情况下需要遵守这些政策。本地覆盖范围文章(LCA)也可能出于索赔付款目的而存在,或阐明B部分根据可能自我管理的药物的福利资格。以下链接可用于搜索NCD,LCD或LCA文档:https://www.cms.gov/medicare-coverage--database-database/search.aspx。可以根据健康计划的酌情决定其他指示,包括任何前面的信息。
了解自然主义情景中人类运动的神经基础对于将神经科学研究扩展到受约束的实验室范式之外至关重要。在这里,我们描述了12名人类参与者(AJILE12)数据集的长期电视学的注释关节,这是公开可用的最大人类神经行为数据集;在被动临床癫痫监测期间,数据集记录了机会性。ajile12包括在55个半连续运动的自然主义运动中的同步颅内神经记录和上身姿势轨迹以及相关的元数据,包括成千上万的手腕运动事件和注释的行为状态。神经记录可在每位参与者至少64个电极中获得500 Hz,总计1280小时。在9个上身关键点处的姿势轨迹估计为1.18亿个视频帧。为了促进数据探索和重复使用,我们在Neurodata中的Dandi档案中共享了Ajile12,而无需边界(NWB)数据标准,并开发了基于浏览器的仪表板。