Gonterman F.(2023)。一项系统的审查评估了主要抑郁症中对经颅磁刺激反应的与患者相关的预测指标。神经精神病和治疗,19,565–577。Mishra J等(2022)。新兴的神经治疗技术。Loscalzo J,&Fauci A和Kasper D和Hauser S,&Longo D和Jameson J(编辑。),哈里森的内科原理,21e。McGraw Hill。 nguyen B等(2019)。 患者治疗脑损伤。 mitra r(ed。 ),康复医学原则。 McGraw Hill。 Raj K.S.等(2023)。 情绪障碍(抑郁和躁狂症)。 Papadakis M.A.和McPhee S.J.和Rabow M.W.和McQuaid K.R.(编辑。 ),当前的医学诊断和治疗2023。 McGraw Hill。 Raj Y等人(2019年)。 抑郁症。 Feldman M.D.和Christensen J.F.和Satterfield J.M.和Laponis R(编辑 ),行为医学:临床实践指南,5E。 McGraw Hill。 S.E. Hal等人(2014年)。 第515-518页。 Vida,R。G.等。 (2023)。 在两次抗抑郁治疗失败后,重复经颅磁刺激(RTMS)对重度抑郁症(MDD)的辅助治疗的疗效:随机假手术对照试验的荟萃分析。 BMC精神病学,23(1),545。 Hsu,C。W.等。 (2024)。 神经科学和生物行为评论,156,105483。 Jin,Y。等。 (2024)。 (2024)。McGraw Hill。nguyen B等(2019)。患者治疗脑损伤。mitra r(ed。),康复医学原则。McGraw Hill。 Raj K.S.等(2023)。 情绪障碍(抑郁和躁狂症)。 Papadakis M.A.和McPhee S.J.和Rabow M.W.和McQuaid K.R.(编辑。 ),当前的医学诊断和治疗2023。 McGraw Hill。 Raj Y等人(2019年)。 抑郁症。 Feldman M.D.和Christensen J.F.和Satterfield J.M.和Laponis R(编辑 ),行为医学:临床实践指南,5E。 McGraw Hill。 S.E. Hal等人(2014年)。 第515-518页。 Vida,R。G.等。 (2023)。 在两次抗抑郁治疗失败后,重复经颅磁刺激(RTMS)对重度抑郁症(MDD)的辅助治疗的疗效:随机假手术对照试验的荟萃分析。 BMC精神病学,23(1),545。 Hsu,C。W.等。 (2024)。 神经科学和生物行为评论,156,105483。 Jin,Y。等。 (2024)。 (2024)。McGraw Hill。Raj K.S.等(2023)。 情绪障碍(抑郁和躁狂症)。 Papadakis M.A.和McPhee S.J.和Rabow M.W.和McQuaid K.R.(编辑。 ),当前的医学诊断和治疗2023。 McGraw Hill。 Raj Y等人(2019年)。 抑郁症。 Feldman M.D.和Christensen J.F.和Satterfield J.M.和Laponis R(编辑 ),行为医学:临床实践指南,5E。 McGraw Hill。 S.E. Hal等人(2014年)。 第515-518页。 Vida,R。G.等。 (2023)。 在两次抗抑郁治疗失败后,重复经颅磁刺激(RTMS)对重度抑郁症(MDD)的辅助治疗的疗效:随机假手术对照试验的荟萃分析。 BMC精神病学,23(1),545。 Hsu,C。W.等。 (2024)。 神经科学和生物行为评论,156,105483。 Jin,Y。等。 (2024)。 (2024)。Raj K.S.等(2023)。情绪障碍(抑郁和躁狂症)。Papadakis M.A.和McPhee S.J.和Rabow M.W.和McQuaid K.R.(编辑。),当前的医学诊断和治疗2023。McGraw Hill。 Raj Y等人(2019年)。 抑郁症。 Feldman M.D.和Christensen J.F.和Satterfield J.M.和Laponis R(编辑 ),行为医学:临床实践指南,5E。 McGraw Hill。 S.E. Hal等人(2014年)。 第515-518页。 Vida,R。G.等。 (2023)。 在两次抗抑郁治疗失败后,重复经颅磁刺激(RTMS)对重度抑郁症(MDD)的辅助治疗的疗效:随机假手术对照试验的荟萃分析。 BMC精神病学,23(1),545。 Hsu,C。W.等。 (2024)。 神经科学和生物行为评论,156,105483。 Jin,Y。等。 (2024)。 (2024)。McGraw Hill。Raj Y等人(2019年)。 抑郁症。 Feldman M.D.和Christensen J.F.和Satterfield J.M.和Laponis R(编辑 ),行为医学:临床实践指南,5E。 McGraw Hill。 S.E. Hal等人(2014年)。 第515-518页。 Vida,R。G.等。 (2023)。 在两次抗抑郁治疗失败后,重复经颅磁刺激(RTMS)对重度抑郁症(MDD)的辅助治疗的疗效:随机假手术对照试验的荟萃分析。 BMC精神病学,23(1),545。 Hsu,C。W.等。 (2024)。 神经科学和生物行为评论,156,105483。 Jin,Y。等。 (2024)。 (2024)。Raj Y等人(2019年)。抑郁症。Feldman M.D.和Christensen J.F.和Satterfield J.M.和Laponis R(编辑),行为医学:临床实践指南,5E。McGraw Hill。 S.E. Hal等人(2014年)。 第515-518页。 Vida,R。G.等。 (2023)。 在两次抗抑郁治疗失败后,重复经颅磁刺激(RTMS)对重度抑郁症(MDD)的辅助治疗的疗效:随机假手术对照试验的荟萃分析。 BMC精神病学,23(1),545。 Hsu,C。W.等。 (2024)。 神经科学和生物行为评论,156,105483。 Jin,Y。等。 (2024)。 (2024)。McGraw Hill。S.E. Hal等人(2014年)。 第515-518页。 Vida,R。G.等。 (2023)。 在两次抗抑郁治疗失败后,重复经颅磁刺激(RTMS)对重度抑郁症(MDD)的辅助治疗的疗效:随机假手术对照试验的荟萃分析。 BMC精神病学,23(1),545。 Hsu,C。W.等。 (2024)。 神经科学和生物行为评论,156,105483。 Jin,Y。等。 (2024)。 (2024)。S.E.Hal等人(2014年)。 第515-518页。 Vida,R。G.等。 (2023)。 在两次抗抑郁治疗失败后,重复经颅磁刺激(RTMS)对重度抑郁症(MDD)的辅助治疗的疗效:随机假手术对照试验的荟萃分析。 BMC精神病学,23(1),545。 Hsu,C。W.等。 (2024)。 神经科学和生物行为评论,156,105483。 Jin,Y。等。 (2024)。 (2024)。Hal等人(2014年)。第515-518页。Vida,R。G.等。(2023)。在两次抗抑郁治疗失败后,重复经颅磁刺激(RTMS)对重度抑郁症(MDD)的辅助治疗的疗效:随机假手术对照试验的荟萃分析。BMC精神病学,23(1),545。Hsu,C。W.等。(2024)。神经科学和生物行为评论,156,105483。Jin,Y。等。 (2024)。 (2024)。Jin,Y。等。(2024)。(2024)。比较了对躁郁症抑郁症治疗的不同非侵入性脑刺激干预措施:随机对照试验的网络荟萃分析。神经调节对阿尔茨海默氏病患者冷漠的功效和安全性:随机对照试验的系统评价和荟萃分析。精神病学杂志,171,17-24。Liu,G。等。 重复经颅磁刺激的影响以及认知训练对阿尔茨海默氏病患者认知功能的影响:系统评价和荟萃分析。 衰老神经科学的边界,15,1254523。 Pagali,S。R.等。 (2024)。 经颅磁刺激对轻度认知障碍,阿尔茨海默氏病,阿尔茨海默氏病与疾病相关的痴呆症和其他认知障碍的疗效和安全性:系统评价和荟萃分析。 国际心理学,1-49。 XIU,H。等。 (2024)。 高频重复的经颅磁刺激(HF-RTMS)对老年人在轻度至中度的阿尔茨海默氏病中的全球认知功能:系统评价和荟萃分析。 神经科学:意大利神经学会和意大利临床神经生理学学会的官方杂志,45(1),13-25。 Huang,P。等。 (2024)。 对阿尔茨海默氏病的三种脑刺激技术的功效分析:反复经颅磁刺激,经颅直流电流刺激和深脑刺激的荟萃分析。 神经疗法的专家评论,24(1),117–127。Liu,G。等。重复经颅磁刺激的影响以及认知训练对阿尔茨海默氏病患者认知功能的影响:系统评价和荟萃分析。衰老神经科学的边界,15,1254523。Pagali,S。R.等。(2024)。经颅磁刺激对轻度认知障碍,阿尔茨海默氏病,阿尔茨海默氏病与疾病相关的痴呆症和其他认知障碍的疗效和安全性:系统评价和荟萃分析。国际心理学,1-49。XIU,H。等。 (2024)。 高频重复的经颅磁刺激(HF-RTMS)对老年人在轻度至中度的阿尔茨海默氏病中的全球认知功能:系统评价和荟萃分析。 神经科学:意大利神经学会和意大利临床神经生理学学会的官方杂志,45(1),13-25。 Huang,P。等。 (2024)。 对阿尔茨海默氏病的三种脑刺激技术的功效分析:反复经颅磁刺激,经颅直流电流刺激和深脑刺激的荟萃分析。 神经疗法的专家评论,24(1),117–127。XIU,H。等。(2024)。高频重复的经颅磁刺激(HF-RTMS)对老年人在轻度至中度的阿尔茨海默氏病中的全球认知功能:系统评价和荟萃分析。神经科学:意大利神经学会和意大利临床神经生理学学会的官方杂志,45(1),13-25。Huang,P。等。 (2024)。 对阿尔茨海默氏病的三种脑刺激技术的功效分析:反复经颅磁刺激,经颅直流电流刺激和深脑刺激的荟萃分析。 神经疗法的专家评论,24(1),117–127。Huang,P。等。(2024)。对阿尔茨海默氏病的三种脑刺激技术的功效分析:反复经颅磁刺激,经颅直流电流刺激和深脑刺激的荟萃分析。神经疗法的专家评论,24(1),117–127。Liu,Z。等。 (2024)。 经颅磁刺激对帕金森氏病冻结步态的影响:对随机对照试验的系统评价和荟萃分析。 衰老神经科学中的边界,16,130485。 Wang,Z。等。 (2024)。 低频RTMS对癫痫病的时间效应和患者认知功能的改善:系统评价和荟萃分析。 癫痫研究,199,107277。 Galimberti,A等人(2024)。 RTM和TDCS治疗慢性TBI症状的有效性:系统的综述和荟萃分析。 神经心理学与生物精神病学的进展,128,110863。 Hu,Y。等(2024)。 非侵入性脑刺激对脑损伤患者意识障碍的影响:对随机对照试验的系统综述和荟萃分析。 大脑研究,1822,148633。 Knorst,G。R. S.等(2024)。 经颅磁刺激在幻影肢体疼痛的治疗中:系统评价。 估算巨麦味transcraniana no tratamento da do do membro Fantasma:UmaRevisãoSistemática。 arquivos de neuro-psiquiatria,82(1),1-10。 Bormann,N。L.等(2024)。 系统的审查和荟萃分析:结合经颅磁刺激或直接电流刺激与药物治疗物质使用障碍的药物疗法。 美国成瘾期刊。 Mehta,D。等人(2024)。 对药物使用障碍的神经调节疗法的系统综述和荟萃分析。Liu,Z。等。(2024)。经颅磁刺激对帕金森氏病冻结步态的影响:对随机对照试验的系统评价和荟萃分析。衰老神经科学中的边界,16,130485。Wang,Z。等。 (2024)。 低频RTMS对癫痫病的时间效应和患者认知功能的改善:系统评价和荟萃分析。 癫痫研究,199,107277。 Galimberti,A等人(2024)。 RTM和TDCS治疗慢性TBI症状的有效性:系统的综述和荟萃分析。 神经心理学与生物精神病学的进展,128,110863。 Hu,Y。等(2024)。 非侵入性脑刺激对脑损伤患者意识障碍的影响:对随机对照试验的系统综述和荟萃分析。 大脑研究,1822,148633。 Knorst,G。R. S.等(2024)。 经颅磁刺激在幻影肢体疼痛的治疗中:系统评价。 估算巨麦味transcraniana no tratamento da do do membro Fantasma:UmaRevisãoSistemática。 arquivos de neuro-psiquiatria,82(1),1-10。 Bormann,N。L.等(2024)。 系统的审查和荟萃分析:结合经颅磁刺激或直接电流刺激与药物治疗物质使用障碍的药物疗法。 美国成瘾期刊。 Mehta,D。等人(2024)。 对药物使用障碍的神经调节疗法的系统综述和荟萃分析。Wang,Z。等。(2024)。低频RTMS对癫痫病的时间效应和患者认知功能的改善:系统评价和荟萃分析。癫痫研究,199,107277。Galimberti,A等人(2024)。RTM和TDCS治疗慢性TBI症状的有效性:系统的综述和荟萃分析。 神经心理学与生物精神病学的进展,128,110863。 Hu,Y。等(2024)。 非侵入性脑刺激对脑损伤患者意识障碍的影响:对随机对照试验的系统综述和荟萃分析。 大脑研究,1822,148633。 Knorst,G。R. S.等(2024)。 经颅磁刺激在幻影肢体疼痛的治疗中:系统评价。 估算巨麦味transcraniana no tratamento da do do membro Fantasma:UmaRevisãoSistemática。 arquivos de neuro-psiquiatria,82(1),1-10。 Bormann,N。L.等(2024)。 系统的审查和荟萃分析:结合经颅磁刺激或直接电流刺激与药物治疗物质使用障碍的药物疗法。 美国成瘾期刊。 Mehta,D。等人(2024)。 对药物使用障碍的神经调节疗法的系统综述和荟萃分析。RTM和TDCS治疗慢性TBI症状的有效性:系统的综述和荟萃分析。神经心理学与生物精神病学的进展,128,110863。Hu,Y。等(2024)。非侵入性脑刺激对脑损伤患者意识障碍的影响:对随机对照试验的系统综述和荟萃分析。大脑研究,1822,148633。Knorst,G。R. S.等(2024)。经颅磁刺激在幻影肢体疼痛的治疗中:系统评价。估算巨麦味transcraniana no tratamento da do do membro Fantasma:UmaRevisãoSistemática。arquivos de neuro-psiquiatria,82(1),1-10。Bormann,N。L.等(2024)。系统的审查和荟萃分析:结合经颅磁刺激或直接电流刺激与药物治疗物质使用障碍的药物疗法。美国成瘾期刊。Mehta,D。等人(2024)。对药物使用障碍的神经调节疗法的系统综述和荟萃分析。神经心理药理学:美国神经心理药理学学院的官方出版,49(4),649–680。Qiu,Y。T等。 (2024)。 在小脑共济失调中重复经颅磁刺激的功效和安全性:系统评价和荟萃分析。 小脑(英国伦敦),23(1),243–254。 li,X。等。 (2024)。 非侵入性脑刺激对与精神分裂症相关的认知障碍认知功能的功效和安全性:系统评价和荟萃分析。 精神病学杂志,170,174–186.Huang,W。等。 (2024)。 非侵入性脑刺激在治疗精神分裂症中的一般心理病理学症状中的功效:一项荟萃分析。 综合神经科学杂志,23(1),7。 Stephens,E.,Dhanasekara,C.S.,Montalvan,V.,Zhang,B.,Bassett,A.,Hall,R.,Rodaniche,A. 重复经颅磁刺激对慢性每日头痛预防的实用性:系统评价和荟萃分析。 当前的疼痛和头痛报告。 Yan,M。等(2024)。 非侵入性脑刺激对冲程后认知障碍的比较功效:网络荟萃分析。 衰老临床和实验研究,36(1),37。 Tang,Z。等。 (2024)。 RTM对中风后运动恢复的影响:fMRI研究的系统评价。 Alfredo,L。C.等(2024)。 大脑和行为,14(1),E3370。 Han,C。等人(2024)。Qiu,Y。T等。(2024)。在小脑共济失调中重复经颅磁刺激的功效和安全性:系统评价和荟萃分析。小脑(英国伦敦),23(1),243–254。li,X。等。(2024)。非侵入性脑刺激对与精神分裂症相关的认知障碍认知功能的功效和安全性:系统评价和荟萃分析。精神病学杂志,170,174–186.Huang,W。等。(2024)。非侵入性脑刺激在治疗精神分裂症中的一般心理病理学症状中的功效:一项荟萃分析。综合神经科学杂志,23(1),7。Stephens,E.,Dhanasekara,C.S.,Montalvan,V.,Zhang,B.,Bassett,A.,Hall,R.,Rodaniche,A.重复经颅磁刺激对慢性每日头痛预防的实用性:系统评价和荟萃分析。当前的疼痛和头痛报告。Yan,M。等(2024)。 非侵入性脑刺激对冲程后认知障碍的比较功效:网络荟萃分析。 衰老临床和实验研究,36(1),37。 Tang,Z。等。 (2024)。 RTM对中风后运动恢复的影响:fMRI研究的系统评价。 Alfredo,L。C.等(2024)。 大脑和行为,14(1),E3370。 Han,C。等人(2024)。Yan,M。等(2024)。非侵入性脑刺激对冲程后认知障碍的比较功效:网络荟萃分析。衰老临床和实验研究,36(1),37。Tang,Z。等。(2024)。RTM对中风后运动恢复的影响:fMRI研究的系统评价。Alfredo,L。C.等(2024)。 大脑和行为,14(1),E3370。 Han,C。等人(2024)。Alfredo,L。C.等(2024)。大脑和行为,14(1),E3370。Han,C。等人(2024)。神经科学:意大利神经学会和意大利临床神经生理学学会的官方杂志,45(3),897–909。中风患者的不同非侵入性脑刺激治疗可用于上肢恢复的组合:系统评价。非侵入性脑刺激技术的有效性和安全性结合了中风后的口感培训:系统评价和荟萃分析。医学,103(2),E36880。Tangjade,A。等。 (2024)。 非侵入性神经调节结合康复疗法可改善中风患者的平衡和步态速度:系统评价和网络荟萃分析。 美国物理医学与康复杂志。 tan,Y。等。 (2024)。 对反应后失语症中重复转颅磁刺激的最佳因素研究的文献综述和荟萃分析。 欧洲医学研究杂志,29(1),18。https://lifequalitytms.com/what-is-tmTangjade,A。等。(2024)。非侵入性神经调节结合康复疗法可改善中风患者的平衡和步态速度:系统评价和网络荟萃分析。美国物理医学与康复杂志。tan,Y。等。(2024)。对反应后失语症中重复转颅磁刺激的最佳因素研究的文献综述和荟萃分析。欧洲医学研究杂志,29(1),18。https://lifequalitytms.com/what-is-tm
治疗/姑息治疗过程中的治疗处方剂量是什么?放射治疗的开始日期是什么?该成员是否具有远处转移(VI期或M1)(即疾病扩散到骨,肝,肺,脑)?所有辐射处理都可以在同一设施中进行吗?是,☐否☐先前放射疗法的历史?是的☐否☐如果是,请提供先验地点和总剂量的详细信息以及完成日期:每个治疗阶段的剂量是什么?第1阶段2阶段3
颅内动力学的客观传统模型无法捕获颅内压(ICP)脉冲的几个重要特征。实验表明,在局部振幅最小值上,ICP脉冲通常在动脉血压(ABP)脉冲之前,而颅骨是一种带滤波器的带滤波器,以心脏速度为中心,用于ICP脉冲,并以ABP脉冲为中心,这是大脑Windkessel机制。这些观察结果与现有的压力容量模型不一致。探索这些问题的方法,作者通过使用简单的电气储罐电路对ABP和ICP脉冲进行了建模,并通过使用自动回流(ARX)建模将电路的动力学与狗的生理数据进行了比较。结果作者的ARX分析显示了犬颅颅骨和脉冲抑制之间的一致性,他们使用电路和颅骨之间的类比来检查脉冲抑制的动力学。结论生理数据和电路动力学之间的对应关系表明,大脑Windkessel由脑实质和CSF的节奏运动组成,它不断反对收缩和舒张血流。已通过流动敏感的MRI记录了这种运动。在热力学术语中,脑动脉灌注的直流电流(DC)功率驱动平滑的毛细管流动和交流电流(AC)功率分流,通过CSF脉冲能量到静脉。这表明脑积水和相关疾病是CSF路径阻抗的疾病。阻塞性脑积水是高分辨率引起的高CSF路径阻抗的结果。正常压力脑积水(NPH)是由于低惯例和高依从性而导致的高CSF路径阻抗的结果。低压脑积水是高电阻和高依从性引起的高CSF路径阻抗的结果。心室肿大是一种自适应生理反应,可增加CSF路径体积,从而降低CSF路径的耐药性和阻抗。伪肿瘤脑是具有正常CSF路径阻抗的高直流功率的结果。CSF分流是一种辅助Windkessel,它会排出能量(从而降低ICP),并降低CSF路径的阻力和阻抗。Cushing的反射是极端的辅助Windkessel,它保持直流功率(动脉高血压)并降低交流电源(心动过缓)。Windkessel理论是一种用于研究通过颅骨流动的热方法方法,它指出了对脑积水和相关疾病的新理解。
传记 Di Ieva 教授于 2002 年获得医学学位,并于 2007 年在意大利获得神经外科专业学位。2007 年至 2009 年,他担任米兰的神经外科顾问,主要参与脑肿瘤和垂体肿瘤的治疗,与耳鼻喉科和颅颌面外科医生、肿瘤学家和放射肿瘤学家密切合作,并参与神经创伤的紧急处理。2009 年至 2011 年,他还在奥地利维也纳医科大学解剖学和细胞生物学中心担任研究员,并在那里获得临床神经科学博士学位(引入神经病理学和 MRI 的创新方法)。2012 年,他被任命为神经解剖学副教授,并多次受邀在意大利、奥地利、瑞士、德国、美国和阿联酋等多个国家教授神经创伤学和神经外科。 2014 年,Di Ieva 教授在多伦多大学圣迈克尔医院完成了为期 3 年的颅底外科临床和研究奖学金,在那里,他还获得了伽玛刀放射外科方面的进一步经验,并继续在加拿大安大略省最大的创伤中心之一进行急诊神经外科手术。他的多学科经验使他能够领导出版“颅底外科手册”(Thieme,纽约,2015 年),这是全球该领域使用最多的书籍之一。2015 年,Di Ieva 博士搬到悉尼,在那里他进一步从事普通神经外科和复杂脊柱外科工作(主要在麦考瑞大学医院、北岸私立医院和皇家北岸医院以及悉尼基督复临安息日会医院),并于 2017 年获得澳大利亚皇家外科学院的奖学金。他是麦考瑞神经外科和麦考瑞大学医院的全职顾问神经外科医师,也是麦考瑞大学的神经外科教授。临床专长 神经肿瘤学(中枢和周围神经系统肿瘤和癌症的外科和多学科治疗);垂体和颅底手术(包括治疗影响脑神经和颅颈交界处的复杂肿瘤和疾病);疼痛治疗(包括显微血管减压和经皮治疗颅面疼痛和面肌痉挛、周围神经减压、脊柱手术、神经调节);显微神经外科、内窥镜和微创(“锁孔”)神经外科;清醒手术和神经监测;脑积水;神经创伤学,包括脑外伤和脊柱损伤以及脑震荡后患者的多学科管理。 学历
。CC-BY-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。
一项早期研究回顾了胸腺的输入,该输入源自上颈神经节,并延伸至大约T3水平[26]。后来,据报道,胸腺由源自位于上颈和星状神经节上的囊后细胞体的神经纤维支配[25]。上宫颈神经节从T1脊神经中接收前神经节,这意味着T1神经是交感神经的主要途径,达到了Supe Rior宫颈神经节[27]。同时,星状神经节是由下颈神经节和第一个胸神经节(T1)神经节形成的,这意味着T1神经直接有助于恒星神经节的形成,在合并时基本上成为了它的一部分[28]。
1.本章规定适用于流线型断面、普通型单板舵及为增加舵力而作特殊布置的一些增强型舵,分为下列型式: (1) A型:有上、下枢轴的舵。(见图4.1.1 A型) (2) B型:有颈轴承和下枢轴的舵。(见图4.1.1 B型) (3) C型:颈轴承下无轴承的舵。(见图4.1.1 C型) (4) D型:有颈轴承和枢轴的海员型舵,其下端固定。(见图 4.1.1 D 型) (5)E 型:双舵舵销,下端固定的海员型舵。(见图 4.1.1 E 型) 2.本章适用于钢制舵。
1.本章规定适用于流线型断面、普通型单板舵和为增加舵力而作特殊布置的某些增强型舵,分为下列型式: (1) A型:有上、下枢轴的舵。(见图4.1.1 A型) (2) B型:有颈轴承和下枢轴的舵。(见图4.1.1 B型) (3) C型:颈轴承下无轴承的舵。(见图4.1.1 C型) (4) D型:有颈轴承和枢轴的海员型舵,其下端固定。(见图 4.1.1 D 型) (5)E 型:双舵舵销,下端固定的海员型舵。(见图 4.1.1 E 型) 2.本章适用于钢制舵。
摘要简介:对比增强超声(CEU)是一种用于评估laplaque Neovanculination(IPN)的体内成像工具(IPN),是易感动脉粥样硬化斑块的越来越多研究的标志物。本研究旨在评估使用CEU量化颈动脉IPN的可行性,并识别和表征颈动脉斑块中的新血管造成。医院的道德委员会批准了这项研究,并在检查前从所有患者那里获得了知情的CEU的知情个人同意。材料和方法:在CEUS上研究了71名颈动脉粥样硬化斑块(95张斑块)的患者。通过视觉解释和定量分析评估了斑块中的对比度增强。在3点尺度上对新血管内化(IPN)测试进行了分级。使用专用软件进行CEUS图像分析对IPN进行量化。结果:发现具有不同类型的回声的斑块的CEU定量参数显着不同。定量参数在软,硬和混合斑块中也有所不同。发现使用CEU的颈动脉IPN定量可行。根据CEU测得的定量参数为不同回声类型的颈动脉IPN提供了多个参考。这可以帮助识别和监测不稳定的动脉粥样硬化斑块。结论:CEU有可能成为临床应用中的重要工具,特别是用于诊断颈动脉粥样硬化斑块的特征和脆弱性。关键词:动脉粥样硬化,动脉粥样硬化斑块,对比增强的超声,对比敏感性,新生血管造成的动脉粥样硬化的特征是由于脂质和钙形成斑块引起的动脉的限制,这些动脉和钙形成的斑块会阻碍氧化型的正常流动,例如氧气流动,例如,造成了氧化型的含量 cardi> cardi> cardial fight of Cardi> cardi> cardi> cardi> cardi>
颅内动脉瘤 (IA) 是一个重大的公共卫生问题。在没有合并症且平均年龄为 50 岁的人群中,其患病率高达 3.2%。需要一种有效的方法来识别 IA 高风险受试者,以提供足够的放射学筛查指南并有效分配医疗资源。人工智能 (AI) 因其在基于图像的任务中的出色表现而受到全世界的关注。它可以作为临床环境中医生的辅助手段,提高诊断准确性,同时减少医生的工作量。AI 可以像人类一样执行模式识别、对象识别和问题解决等任务。根据收集的训练数据,AI 可以以半自主的方式协助决策。同样,AI 可以识别可能的诊断,并根据健康记录或影像数据选择合适的治疗方法,而无需任何明确的编程(指令集)。动脉瘤破裂预测是预测建模的圣杯。AI 可以显著改善破裂预测,从而挽救生命和肢体。如今,深度学习 (DL) 在准确检测医学影像中的病变方面显示出巨大潜力,并且已经达到甚至超越了专家级诊断。这是通过增加计算放射组学准确诊断 UIA 的第一步。这不仅可以诊断,还可以建议治疗方案。未来,我们将看到 AI 在 IA 的诊断和管理中发挥越来越大的作用。