• 闭合性头部损伤是指头部受到的撞击没有使颅骨破裂。常见的闭合性头部损伤通常是脑震荡或脑挫伤。如果大脑震动,则称为“脑震荡”。如果是脑出血,则称为“脑挫伤”。这种损伤可能导致大脑肿胀或受压。闭合性头部损伤可能轻或重。损伤的严重程度取决于大脑肿胀和受压。
治疗是根据您的婴儿需求,年龄,严重性和发育里程碑量身定制的。最初,治疗旨在利用婴儿在生命的第一年就可以利用婴儿的软颅骨骨头和大脑的迅速生长。目标是通过将任何进一步的压力限制为已经扁平的区域,使头骨被动地绕开。6个月以下的婴儿接受了积极的重新定位技术和肚子时间活动。可以考虑6至9个月的婴儿恢复头盔。
a. 日本丰桥技术科学大学电气与电子信息工程系 b. 日本茨城大学国立技术研究所 c. 日本 TechnoPro 公司,TechnoPro R&D 公司 d. 日本丰桥技术科学大学电子跨学科研究所 (EIIRIS) e. 日本丰桥技术科学大学应用化学与生命科学系 f. 日本丰桥技术科学大学计算机科学与工程系 摘要 微电极技术在电生理学中至关重要,并为神经科学和医学应用做出了贡献。然而,必须尽量减少与针状电极插入脑组织和植入手术相关的组织损伤,因为这些损伤使稳定的慢性记录变得不可能。在这里,我们报告了一种使用 5 微米直径针状电极的方法,该方法能够通过手术方法跟踪组织运动。电极用可溶解材料放置在小鼠的脑组织上,同时减少对组织的物理压力;然后将装置植入大脑,无需将其固定在颅骨上,同时在组织上实现电极浮动。该电极显示稳定的记录,6 个月内信噪比无明显下降,并且与使用具有相同针头几何形状的其他颅骨固定电极相比,组织损伤最小。
分子遗传学,适当的动物模型的重大进展以及分析技术的改进有助于对心脏发展的更多了解。现代的 - 杜克胚胎学现在将分子和细胞生物学技术与跨多个模型系统的传统胚胎学方法结合在一起。我们的理解中很大一部分继续源自非人类的实验模型,并补充了从结构畸形的人心脏中估算的观察结果[1]。在早期研究中,鸟类胚胎是最受欢迎的实验模型,因为可以轻松地观察和操纵它们。由于遗传和分子研究工具的强度,该小鼠现已成为研究心脏发育的首选模型。表1.1提供了对人,小鼠和鸡胚胎中发育分期的简化比较[2-8]。了解心脏发展不仅对分类和管理先天性心脏病有影响,而且还为儿童和成人的新型管理方法提供了一个平台。的目标是简化对复杂发展结构的描述,在本章中,我们努力使用与人类发展的描述术语进行统一的命名术语。“背心肌突出”称为“前庭脊柱”。因此,“前后轴”被“背腹轴”或“颅骨 - 尾audal”取代。 “前”通常被“腹侧”或“颅骨”取代。 “后部”经常被“背面”或“尾骨”取代。 “ CONUS”被“近端流出道”代替,而“ Truncus”被远端流出道取代。
下一步是将神经刺激器放在头骨中,并将导线连接到神经刺激器(图A)。钛托盘固定在头骨中,然后将神经刺激器固定在托盘中。托盘和神经刺激器都没有接触大脑。神经刺激器的厚度与您的头骨一样厚,并设计为颅骨表面。一旦将其放置在头皮下方,您或其他任何人都看不到该设备(图B)。
骨转移可发生在身体的任何骨骼中,但最常见的是中轴骨骼(颅骨、脊椎骨、骨盆、肩膀和肋骨)。骨转移患者通常会感到患骨疼痛。骨转移还可能导致严重的并发症,如骨折或脊髓压迫,其中骨转移或脊椎骨折会导致脊髓受压,需要立即就医。这些并发症可能导致行动能力丧失、生活质量下降、医疗保健需求增加和生存率降低(Coleman 等人,2020 年)。
大脑是控制和协调的执行器。当颅骨出现病变时,可能会对大脑生理产生退化、变形和不稳定的影响。然而,其主要后果可能因人而异。在这种情况下,肿瘤是一种特殊的病理,它会使脑实质永久变形。从转化角度来看,变形力学和压力,特别是肿瘤所致大脑的颅内脑压 (ICP),在文献中尚未得到全面解决。这是神经病变预后中一个重要的研究领域。为了解决这个问题,我们旨在在本研究中解决肿瘤脑中的压力之谜,并提出一种相当可行的方法。使用基于图像的有限元建模,我们重建了肿瘤脑并探测由此产生的变形和压力 (ICP)。肿瘤是通过将体素区域均匀扩大 16 和 30 毫米来生长的。总共研究了三个病例,包括肿瘤的现有阶段。还提供了由于脑室区域内流动而产生的脑脊液压力,以使模型在解剖学上逼真。对获得的结果进行比较,明确表明,随着肿瘤区域的面积和尺寸增加,变形模式发生了广泛变化并扩散到整个脑体积,肿瘤附近的集中度更高。其次,我们得出结论,颅骨内的 ICP 压力确实大幅增加;然而,它们仍然低于
尚未确定用于监测术中语言症状的语言任务。这项研究旨在检查在清醒颅骨术期间对语言功能的定量评估是否可以预测患者的早期术后语言功能。包括语言为主导半球的三十七名患有脑肿瘤的患者。他们在术前和肿瘤切除术结束时进行了视觉和听觉命名,以进行内部评估。使用西方失语症电池,术前,术后(1周内)和术后晚期(1个月后)对其整体语言功能进行了评估。视觉和听觉命名评分的术前和术中变化与术前和术后早期评估之间的大多数西方失语症电池评分的变化显着相关,这对于听觉命名更为显着。多个线性回归分析表明,听觉命名评分的变化预测了西方失语症电池失语症的早期术后变化的术前变化。接收器的操作特征分析表明,在术后早期早期预测失语症的发展或加剧方面,听觉的曲线或判别能力的面积较高。考虑到针对低级和高级神经胶质瘤的分析,攻击性命名(攻击范围更广泛的语言功能)可能比视觉命名更具信息性,因为在术后早期的失败患者中,在清醒颅骨术中的语言命名评估是对高级囊肿的早期发育。
活动:a) 神经元膜的快速去极化,这取决于钠离子和钾离子的电压,并产生动作电位 (AP) [3]。b) 由于突触活动和几种神经递质系统的功能,膜电位变化较慢 [4]。AP 是膜电位的快速变化,时间为 1 – 2 毫秒,它使细胞内电位从负变为正,并迅速返回细胞内静息电位。它具有较小的场电位分布(在细胞外环境中的渗透较少)并且持续时间较短(约 1 毫秒,而突触后电位则为 15 到 200 多毫秒)[3,5]。突触后电位扩散到颅骨表面并且可以测量。为了测量大脑活动,我们可以使用一种非侵入性的方法,通过一种称为脑电图 (EEG) 的设备将电极放在头皮上。EEG 信号主要由突触后锥体细胞的可测量电位产生,这些细胞彼此平行且垂直于颅骨表面。它创建了一个细胞外皮质偶极层 [5,6]。因此,颅骨上的电极代表皮质神经元突触后电位的时间和位置。它还包括大皮质区域中缓慢且同时的电位变化(图 1)[7,8]。EEG 信号可用于识别许多临床问题,例如精神分裂症、阿尔茨海默病、失眠症、睡眠障碍、癫痫症、脑瘤和中枢神经系统感染。除了具有非侵入性和精确的时间分辨率之外,该技术还具有低成本且不需要极端的安全限制 [5]。通过脑电图信号可以发现,癫痫发作通常是自发性的。它们是由部分脑细胞突然放电引起的,因此会导致大脑暂时兴奋。有时癫痫发作可能会被忽视,或者可能与其他脑部疾病(如脑膜炎或中风)混淆,这些疾病也会导致相同的症状。研究表明,大约 10% 的人一生中至少会经历一次癫痫发作 [ 10 ]。对脑电图 (EEG) 信号中的癫痫进行精确分析可以揭示有关这种普遍存在的脑部疾病的宝贵事实 [ 11 ]。由于 EEG 信号非常复杂,因此需要分析多种因素。手动目视检查 EEG 信号已被发现有助于识别模式。然而,这种方法需要高水平的技术和分析能力,以及多种信号处理技术[12]。因此,近年来,癫痫发作的自动检测
客观学习手术技能是神经外科培训的重要组成部分。理想情况下,这些技能在离体环境中得到足够的程度。作者先前描述了一种体外脑肿瘤模型,该模型由注射荧光琼脂的Ca-daveric动物脑组成,用于获得广泛的基本神经肿瘤学技能。该模型的重点是触觉技能,例如安全组织消融技术和基于荧光切除的训练。随着重要的教学技术(例如混合现实和3D打印)变得更加容易获得,作者开发了一种易于使用的训练模型,将触觉方面集成到混合现实设置中。方法从医学成像数据中细分了脑肿瘤患者的解剖结构,以创建病例的数字双胞胎。骨结构是3D打印的,并与体外脑肿瘤模型合并。在混合现实耳机中可视化了序列的结构,并且印刷和虚拟物体的一致性使它们在空间上叠加。以这种方式,该系统的用户能够在整个治疗过程中训练从手术计划到手术的仪器准备和执行。在联合模型促进模型(患者)定位以及颅骨切开术和切除计划的程度符合病例依赖性规格的程度中,结果混合现实可视化。晚期物理模型允许脑肿瘤手术训练,包括皮肤切口;颅骨切开术;硬脑膜开放;荧光引导的肿瘤切除;还有硬脑膜,骨头和皮肤闭合。结合了混合现实可视化与相应的3D打印物理动手模型的结论,可以对顺序脑肿瘤切除技能进行高级训练。三维印刷技术促进了精确,可重复和全球可访问的脑肿瘤手术模型的生产。在神经外科居民的技能培训的重要方面进行了提出的描述的脑肿瘤切除模型(例如,定位病变,头部位置计划,头骨毛骨子化,硬脑膜开口,组织消融技术,荧光引导的重新裂缝和闭合)。混合现实通过难以建模的重要结构(例如血管和纤维区域)和高级相互作用概念(例如颅骨切开术模拟),丰富了模型。最后,这个概念展示了一种桥接技术,用于术中混合现实。