人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他
解决电子结构问题代表了量子计算机的一个有前途的应用领域。目前,人们投入了大量精力设计和优化近期量子处理器的量子算法,目的是使用有限的量子资源在选定的问题实例上超越经典算法。这些方法仍有望具有防止大规模和批量系统量子模拟的运行时间。在这项工作中,我们提出了一种策略,使用在量子模拟数据上训练的机器学习潜能将量子计算方法的范围扩展到大规模模拟。在当今的量子环境中应用机器学习潜能的挑战来自于影响电子能量和力的量子计算的几种噪声源。我们研究了选择各种噪声源的机器学习潜能的可训练性:统计、优化和硬件噪声。最后,我们从实际 IBM Quantum 处理器上计算的氢分子数据构建了第一个机器学习潜能。这已经使我们能够执行任意长且稳定的分子动力学模拟,优于所有当前分子动力学和结构优化的量子方法。
滑铁卢地区科技行业滑铁卢地区是一个拥有60万个社区,拥有悠久的创业历史,强大的创业生态系统支持和领先的大专院校。拥有世界第二高密度的初创公司,有1,400多家技术公司雇用了23,200多名员工。过去五年来,滑铁卢地区的技术劳动力增长了40%,使其成为北美增长最快的人才市场之一。该地区是多伦多 - 沃特卢(Toronto-Waterloo)走廊的一部分,这是100公里的延伸,构成了北美第二大技术集群。走廊是人才,增长,创新和发现的全球中心,拥有15,000多家科技公司和200,000多名科技工人。创业公司和规模的成功,十年前,滑铁卢地区大量涌入了初创企业。自2010年以来总共建立了3,885家新创业公司。在近十年中每天都在一家初创公司工作,过去五年中有2,040。成立的初创公司 - 滑铁卢地区(2015 - 2020)
皮肤癌检测是临床决策支持的一个常见应用 [7]。由于皮肤癌患者数量的增加和早期检测的良好治疗效果,过去几年来,人们在该领域进行了大量研究。在此背景下,DNN 已成为开发皮肤图像分类模型的可行方法 [2、8、12、30]。社区的高度关注导致出现了各种不同方法,其性能水平也参差不齐。1 所有方法的共同点都是训练一个可用于诊断并从而用于临床决策支持的模型。因此,新方法的评估标准通常是它们是否能够使模型在各种皮肤病诊断任务中取得更好的性能结果 [21]。同时,其他 AI 研究领域也越来越多地考虑对模型预测的解释。相比之下,这些技术在皮肤图像分类中的应用几乎没有得到解决,尽管最近的一些研究已经认识到
作为一家致力于最高组织、知识和个人诚信标准的研究和政策机构,CNAS 保持严格的知识独立性,并对其思想、项目、出版物、活动和其他研究活动拥有唯一的编辑指导和控制权。CNAS 不对政策问题持机构立场,CNAS 出版物的内容仅反映其作者的观点。为了履行其使命和价值观,CNAS 不参与游说活动,并完全遵守所有适用的联邦、州和地方法律。CNAS 不会代表任何实体或利益从事任何代表活动或倡导活动,如果中心接受来自美国以外来源的资金,其活动将仅限于符合适用联邦法律的真正的学术、学术和研究相关活动。该中心每年都会在其网站上公开承认所有捐款者。
医疗保健系统在确保人们的健康方面发挥着至关重要的作用。建立准确的诊断是这一过程的重要组成部分。由于消息来源强调误诊和漏诊是一个常见问题,因此必须寻求解决方案。诊断错误在急诊室很常见,急诊室被认为是一个压力很大的工作环境。当今的行业被迫应对快速变化的技术进步,这些进步导致系统、产品和服务的重塑。人工智能 (AI) 就是这样一种技术,它可以作为诊断问题的解决方案,但伴随着技术、道德和法律挑战。因此,本论文旨在研究人工智能如何影响诊断的准确性,以及它在医疗保健中的整合与技术、道德和法律方面的关系。本论文从文献综述开始,文献综述作为理论基础,并允许形成概念框架。概念框架用于选择受访者,结果对教授、研究人员、医生和政治家进行了 12 次采访。此外,还进行了一项调查,以获取公众对此事的看法。研究结果表明,人工智能已经足够成熟,能够做出比医生更准确的诊断,并以行政任务的形式减轻医务人员的负担。一个障碍是可用的数据不完整,因为法律阻碍了患者数据的共享。此外,人工智能算法必须适合所有社会少数群体,并且不能表现出种族歧视。欧洲人工智能联盟于 2018 年成立,旨在控制该技术。可以在国家和地区层面制定类似的举措,以保持对其正确使用的某种形式的控制。
FDA 和医疗器械行业认识到全球统一的方法来监管支持 AI/ML 的设备的价值。2021 年,FDA、加拿大卫生部和英国药品和保健产品管理局 (MHRA) 联合发布了一份文件,其中确定了 10 项指导原则,这些原则可以为良好机器学习规范 (GMLP) 的制定提供参考。GMLP 支持开发安全、有效和高质量的人工智能/机器学习技术,这些技术可以从实际使用中学习并可能提高设备性能。
本文介绍了在人机协作背景下代表,推理和交互式学习领域知识的综合体系结构。答案集Prolog是一种非单调逻辑推理范式,用于用不完整的comsense域知识来表示和理由,为任何给定目标计算计划并诊断出意外的观察。基于ASP的推理还用于指导以前未知的动作的互动学习以及编码负担能力,动作前提和效果的公理。此学习将主动探索,反应性动作执行和人类(口头)描述的输入观察以及学习的动作和公理用于后续推理。在模拟机器人上评估了架构,该机器人协助人类在室内域中。
根据斯坦福大学科学家进行的独立研究(用于方法和数据访问)-https://journals.plos.org/plosbiology/article?
人工智能 (AI) 及其子领域机器学习 (ML) 的进步几乎体现在生活的每个领域,包括前沿的健康研究。 1,2 然而,研究论文中描述的健康 AI/ML 系统中只有很小一部分进入临床实践。为了解决这个问题,儿童医院 (SickKids) 和 Vector 人工智能研究所 (Vector) 于 2019 年 10 月 30 日组织了 Vector-SickKids 健康 AI 部署研讨会,166 名临床医生、计算机科学家、政策制定者和医疗保健管理人员参加了会议。目的是展示 AI 从研究实验室走向临床的真实案例。演讲者来自加拿大和美国的各种机构,包括圣迈克尔医院、大学健康网络、滑铁卢大学、安大略公共卫生学院、安大略理工大学、密歇根大学、北加州凯撒医疗机构、约翰霍普金斯大学、宾夕法尼亚大学和杜克大学。每个项目所经历的成功和挑战为新兴的健康 AI 领域提供了宝贵的见解。要求每位发言者准备一个结构化的演讲,涉及以下主题: