1,柏林柏林自由大学柏林大学柏林大学柏林大学的头和颈外科手术系,柏林卫生研究院,柏林卫生研究院wenhao.yao@hotmail.com 2 2号耳鼻喉科和头颈外科,鲁伊因医学院,上海何乔汤顿大学医学院,上海200025中国科学院癌症医院科学医院(吉安格癌症医院),中国杭州310015; qianxu@zjcc.org.cn 4血液学,肿瘤学和肿瘤免疫学系Charité -Universitätsmedizin柏林,柏林自由大学和柏林汉堡大学,柏林汉堡大学,柏林卫生研究院sebastian.ochsenreither@charite.de(请参见上文); konrad.klinghammer@charite.de(K.K。)5,马萨诸塞州马萨诸塞州哈佛医学院的马萨诸塞州综合医院,美国马萨诸塞州02138; sferrone@mgh.harvard.edu 6美国匹兹堡匹兹堡大学癌症研究所,美国宾夕法尼亚州15106; deleoab@gmail.com 7美国匹兹堡大学,宾夕法尼亚州匹兹堡大学帕特堡大学15106,美国8号耳鼻喉科,头颈部手术,比勒菲尔德诊所 50,33604 Bielefeld,德国; holger.sudhoff@klinikumbielefeld.de(H.S. ); felix.oppel@klinikumbielefeld.de(F.O.)5,马萨诸塞州马萨诸塞州哈佛医学院的马萨诸塞州综合医院,美国马萨诸塞州02138; sferrone@mgh.harvard.edu 6美国匹兹堡匹兹堡大学癌症研究所,美国宾夕法尼亚州15106; deleoab@gmail.com 7美国匹兹堡大学,宾夕法尼亚州匹兹堡大学帕特堡大学15106,美国8号耳鼻喉科,头颈部手术,比勒菲尔德诊所50,33604 Bielefeld,德国; holger.sudhoff@klinikumbielefeld.de(H.S. ); felix.oppel@klinikumbielefeld.de(F.O.)50,33604 Bielefeld,德国; holger.sudhoff@klinikumbielefeld.de(H.S.); felix.oppel@klinikumbielefeld.de(F.O.)9辐射肿瘤学和放射疗法,Charité -Universitätsmedizin柏林,柏林自由大学和柏林洪堡大学,柏林卫生研究院,CharitéCharité校园本杰明·富兰克林,Hindenburgdamm 30,12203 Berlin,berlin,hindenburgdamm; andreas.kuppig@charite.de 10妇科诊所,Charité -Universitätsmedizin柏林,柏林自由大学和伯林洪堡大学,柏林卫生研究院,柏林卫生研究院,柏林校园Virchow Clinic,Augustenburger Platz,13353 Berlin,Dermany,Dermany,Augustenburger Platz 1,13353 Berlin; andreas.kaufmann@charite.de *通信:andreas.albers@charite.de
搬迁沙田污水处理厂往岩洞的实时大数据人工智能环境影响评估 (AIEIA) 执行摘要 搬迁沙田污水处理厂往岩洞(本项目)的环境影响评估中,位于沙田马场和周边河道的彭福公园鹭鸟林被列为环境指标之一。目前,香港对鸟类生态栖息地的监测主要以人为观察为主,而人为观察的时间间隔有限。由于繁殖季节环境变化微妙,人为不易分辨鸟类行为的细微变化。渠务署藉此机会与香港科技大学合作,通过在项目下对彭福公园鹭鸟林进行先导观察,探索将最先进的绿色人工智能 (AI) 技术融入环境监测。观察是明智行动的第一步。完整的阵列数据收集系统 (ADCS) 和实时数据提取管道架构经过全面设计,可实现模块化,并可成功部署在各种结构中,确保在所有环境中可靠运行。ADCS 具有多种优势,可满足户外环境长期监测的需求:(i) 自动连续录制;(ii) 高分辨率视频;(iii) 高帧率视频;(iv) 巨大的本地数据存储;(v) 保护恶劣环境(例如极端天气条件)。采用一种新的视频压缩标准高效视频编码 (H.265) 来处理、存储和传输高分辨率视频,同时保持视频质量。在户外环境中实现数据采集自动化之后,实施了 AI 算法,以从长达数月的数据中检测鸟类。本研究重点是检测大白鹭和小白鹭,即研究地点的主要鸟类。AI 算法开发的主要挑战是缺乏香港鸟类的标记数据集。为了解决这个问题,我们利用 3D 建模制作了大白鹭和小白鹭的合成鸟类数据集。在虚拟图像的开发过程中,我们应用了姿势和身体大小等显著特征的大量变化,这反过来又迫使模型专注于专家用来区分鸟类物种的细粒度鸟类特征,例如颈部和头部。经过训练的 AI 模型能够在不同背景下以高预测分数区分和定位鸟类物种,平均准确率达到 87.65%。我们的人工智能 ADCS 解决方案比传统的人工观察具有多种潜在优势,能够在不同的天气条件下为不同物种的鸟类计数、行为研究、空间偏好以及种间和种内相互作用提供密集的表面。这项研究的结果和发现有利于未来规划环境监测工作以及项目下的工作阶段,以尽量减少对彭福公园鹭鸟林的潜在环境影响。
也损坏。患者倾向于通过静态症和坏死,骨骼的萎缩和肉毒作势以及软组织的不同部分从吞咽困难中(3)。鉴于这些治疗引起的损害,预后仍然很差。随着肿瘤阶段的增加,生存率降低。对于UICC III和IV期,2年生存率约为30%。 三十至5个百分比发展出复发性疾病(RD),该疾病在无病生存期差(DFS)中反映了(1,4-6)。 几十年来,治疗方案的变化并没有明显改善。 使用新辅助和辅助化疗的使用仍然有争议(4、7-9)。 尤其是关于肿瘤免疫微环境(时间)的知识,如本文稍后所述,另一种有前途的疗法选择是使用免疫检查点抑制剂(ICI)的治疗,PD-L1和PD-1是最突出的ICI。 肿瘤细胞上 pd-l1表达通过肿瘤的照射增加(10)。 对PD-L1和PD-1的抗体施用在治疗几种实体肿瘤(例如皮肤黑色素瘤)方面非常成功(11)。 在HNSCC中,单一疗法对单一疗法的影响是对当前化学治疗标准的重大改进,而对整体生存率(OS)的幻想却令人幻想(12,13)。 在其他出版物中,有人建议组合疗法可能是解决方案(14)。 然而,尚未找到对患者结局的最有希望的特定药物组合。对于UICC III和IV期,2年生存率约为30%。三十至5个百分比发展出复发性疾病(RD),该疾病在无病生存期差(DFS)中反映了(1,4-6)。几十年来,治疗方案的变化并没有明显改善。使用新辅助和辅助化疗的使用仍然有争议(4、7-9)。尤其是关于肿瘤免疫微环境(时间)的知识,如本文稍后所述,另一种有前途的疗法选择是使用免疫检查点抑制剂(ICI)的治疗,PD-L1和PD-1是最突出的ICI。pd-l1表达通过肿瘤的照射增加(10)。对PD-L1和PD-1的抗体施用在治疗几种实体肿瘤(例如皮肤黑色素瘤)方面非常成功(11)。在HNSCC中,单一疗法对单一疗法的影响是对当前化学治疗标准的重大改进,而对整体生存率(OS)的幻想却令人幻想(12,13)。在其他出版物中,有人建议组合疗法可能是解决方案(14)。然而,尚未找到对患者结局的最有希望的特定药物组合。临床试验依靠生物标志物选择最合适的患者接受昂贵的疗法,并防止对不会受益的患者使用潜在的有害药物。因此,需要用于临床前研究的研究工具。这些需要反映典型的患者特征,并具有代表性的癌症队列,以测试是否真的在肿瘤细胞或肿瘤免疫细胞上存在新靶向的抗原。理想情况下,可以使用它们来塑造有关是否应将新药转移到临床试验环境中的意见。肿瘤内免疫细胞最近已进入有关许多实体瘤的研究组的重点。研究一直在研究其结构和内容的时间,揭示了迷宫的细胞和细胞因子的抑制系统。在几项研究中,研究人员试图适应时间以更好地治疗反应。尤其是肿瘤的照射会诱导癌细胞中凋亡,从而通过增加的MHC表达在抗原呈递细胞上下载抗原。这对于免疫检查点抑制剂增加治疗反应可能很重要。另一方面,强烈的照射会导致淋巴结序列,因此仍然需要进行大量研究(15)。我们的研究小组的研究表明,纤维中免疫细胞的组成有助于改善HNSCC的化学放疗反应(16)。免疫细胞参数的评估显示出与生存的关联已被广泛接受,可以将时间归类为免疫学“热”(肿瘤中的免疫细胞),“冷”(无免疫细胞内部纤维化)或“排除”(肿瘤边界的免疫细胞)(17,18)。
每年约有 500,000 例头颈部鳞状细胞癌 (HNSCC) 新病例。放射疗法是口腔鳞状细胞癌 (OSCC) 的重要治疗方法。几十年来,HNSCC 患者的生存率一直很低 (50%),因为 HNSCC 细胞的放射抗性导致放射治疗失败。本研究旨在确定可以增强放射敏感性的 PI3K 抑制剂。结果表明,泛磷酸肌醇 3-激酶 (PI3K) 抑制剂 BKM120 和 I 类 α 特异性 PI3K 抑制剂 BYL719 以剂量依赖性方式降低 OSCC 细胞的生长,但没有降低放射抗性的 OML1-R 细胞的生长。BKM120 或 BYL719 与放射联合治疗对 OSCC 细胞和放射抗性的 OML1-R 细胞具有增强的抑制作用。此外,联合治疗的增强抑制作用在患者来源的 OSCC 细胞中得到证实。 mTOR抑制剂AZD2014与BKM120或AZD2014与BYL719联合放射治疗对放射抗性的OML1-R细胞的抑制作用明显增强,提示PI3K抑制剂是治疗口腔鳞状细胞癌的潜在放射敏感性治疗药物。
头部和颈部paragangliomas(HNPGL)是罕见的神经内分泌肿瘤,具有高度的遗传力,并且主要与十个基因的突变相关,例如SDHX,SDHAF2,SDHAF2,VHL,VHL,RET,RET,RET,NF1,NF1,NF1,TMEM127,MAX,MAX,FH,MEN2,MEN2,MEN2,MEN2和SLC25A11。阐明突变患病率对于基因检测的发展至关重要。在这项研究中,使用整个外显子组测序中,我们在102名HNPGL(82个颈动脉和23个迷走神经paragangliomas)的俄罗斯患者中鉴定了主要易感性基因中的致病/可能致病变异。在43%(44/102)的患者中检测到致病性/可能的致病变异。我们确定了测试基因的以下变体分布:SDHA(1%),SDHB(10%),SDHC(5%),SDHD(24.5%)和RET(5%)。SDHD变体。因此,在HNPGLS患者中,最常见的基因是SDHD,其次是SDHB,SDHC,RET和SDHA。
摘要。c-间充质-上皮转化 (Met) 是肝细胞生长因子 (HGF) 的跨膜酪氨酸激酶受体。HGF/Met 信号传导刺激多种通路,包括 Ras/丝裂原活化蛋白激酶 (MAPK)、磷脂酰肌醇 3 激酶/蛋白激酶 B 和 Wnt/β-catenin 通路,这些通路在细胞增殖、存活、运动、侵袭和血管生成中发挥重要作用,并促进肿瘤的发展和进展。异常的 HGF/Met 信号传导与几种类型的肿瘤预后不良有关,包括头颈部鳞状细胞癌 (HNSCC)。尽管 HGF/MET 通路和 HGF 和/或 Met 抑制剂已被广泛研究,但它们在肿瘤免疫中的作用仍然不清楚。本综述文章总结了有关 HNSCC 中 HGF/Met 信号传导的研究结果,包括基因和蛋白质改变、生物学功能和患者预后。此外,还讨论了 HGF/Met 在肿瘤免疫中的作用,并从肿瘤免疫的角度阐明了 HGF/Met 表达与 HNSCC 患者预后之间有争议的关联。最后,本综述提出了一种可能提高 Met 治疗 HNSCC 疗效的临床方法,即瘤内注射 Met 抑制剂以降低对免疫细胞募集的抑制作用。然而,需要进一步研究以更好地了解 HGF/Met 通路对肿瘤微环境的影响,并且 HGF 和 Met 抑制剂对肿瘤环境中免疫细胞的影响应成为未来研究的重点。
获得了与上述基因表达相对应的(德国Sigma Aldrich)。理想稀释比和检索缓冲液在染色之前确定(ITGA-2:1:100,MMP-1:1:1:1:1:1:1:1:1:1:250)。简短地,将组织切片用二甲苯脱蜡,并随着酒精浓度降低而补液。使用柠檬酸盐缓冲液(10 mmol/L,pH 6.0)在微波炉(600 W)中进行热诱导的表位检索后,在室温下使用载玻片,用针对ITGA-2,TEK,TEK,TEK,MMP-1的主要抗体进行1小时。Ultravision LP检测系统(Lab Vision Corporation,Fremont,California)用于根据制造商的建议检测抗体结合。抗体结合位点通过添加3-3-二氨基苯胺颜色褐色。最后,进行了用苏木精三世(Merck,Darmstadt,Germany)对Tis-Sue样品的抗染色。所有载玻片均分配给标记表达式的四类类别之一:0 =负; 1 =弱:在<30%的细胞中染色; 2 =中度:30%至60%的细胞染色;和3:超过60%的细胞中的染色强。采用核心污渍的平均值来确定染色强度。阳性对照是根据制造商的协议进行的。使用Olympus BH-2显微镜(Olympus America,Melville,New York,New York)分析样品。
人类表皮生长因子受体 (EGFR) 也称为 ErbB-1 或 HER1,是 ErbB 受体家族的成员。它是一种广泛研究的致癌基因,影响基因表达、增殖、血管生成、凋亡抑制、细胞运动、转移、粘附和血管生成。作为精准治疗的首要目标之一,尤其是由于肺癌中发现的高水平突变,人们自然而然地认为头颈癌患者可能受益于 EGFR 靶向疗法。这是因为 EGFR 在超过 90% 的头颈部肿瘤中过表达 (2),并且这种关联意味着患者生存期较短 (3-5)。HNSCC 的 EGFR 表达显著增加,EGFR 扩增频率高,单核苷酸变异 (SNV)/插入缺失率低 (6)。
第 2 章 — 机组人员颈部疼痛的流行病学、定义和操作影响 2.1 流行病学 2-1 2.1.1 普通人群中的颈部疼痛 2-1 2.1.2 航空中的颈部疼痛 2-2 2.2 操作因素 2-3 2.2.1 颈部疼痛和飞机类型 2-3 2.2.2 高性能固定翼飞机中的颈部疼痛和损伤 2-3 2.2.3 高速喷气式飞机机组人员的颈部疼痛模式 2-6 2.2.3.1 急性损伤 2-6 2.2.3.2 急性损伤的长期影响 2-7 2.2.4 高性能战斗机文献摘要 2-8 2.2.5 固定翼运输飞机中的颈部疼痛和损伤 2-9 2.2.6直升机中的疼痛和损伤 2-9 2.2.6.1 后方机组人员问题 2-11 2.2.6.2 长期影响 2-11 2.2.6.3 直升机文献摘要 2-12 2.3 机组人员颈部疼痛定义 2-12 2.3.1 定义疼痛 2-12 2.3.2 定义颈部疼痛 2-12 2.3.3 定义慢性疼痛 2-12 2.3.4 飞行相关颈部疼痛 2-13
颈椎射频去神经支配术 (RFD) 是一种治疗颈部、头部、肩部和上背部疼痛的门诊手术。它也被称为颈椎小关节热凝固术或颈椎神经切断术或射频消融术。本信息表将解释它是什么。您的医生可以解释它是否适合您。
