堆叠的二维晶格的异质结构在设计新型材料特性方面表现出了巨大的希望。作为这种系统的原型示例,六角形共享的蜂窝 - 卡加姆晶格已在各种材料平台中实验合成。在这项工作中,我们探索了蜂窝状晶格的三个旋转对称变体:六边形,三亚贡和双轴相。分别表现出二轴和双轴相分别表现出微不足道的不体和狄拉克半分条带结构,但六边形相位的六角相构成了一个高阶拓扑相,由γ点附近的频带倒置驱动。这突出了与六角形同型系统中观察到的k点的传统频带反转的关键区别。fur-hoverore,我们演示了这些阶段的不同拓扑特性如何导致由扭曲或晶格不匹配的HK Sys-sys-sys形成的Moir'E异质结构内的网络带结构。可以通过蜂窝和kagome系统之间的外在扭曲或固有的晶格不匹配来实验观察这些网络带结构。
超导体上的磁链托管Majora零模式(MZM)引起了极大的兴趣,因为它们可能在耐断层量子计算中使用了它们。但是,由于缺乏对这些系统的详细,定量的理解而阻碍了这。作为一个重要的一步,我们提出了一种基于微观的相对论理论的第一原理计算方法,该理论的不均匀超导体应用于Au覆盖的NB(110)顶部的铁链(110),以研究SHIBA带结构和边缘状态的拓扑性质。与当代的考虑相反,我们的方法可以引入数量,表明频带倒置,而无需在现实的实验环境中拟合参数,因此具有确定零能量边缘状态的拓扑性质,在基于实验系统的基于准确的无效的描述中。我们确认Au / nb(110)表面上的铁磁链不支持任何分离的MZM;但是,可以使用显示MZM的特征的稳健零能边缘状态来鉴定广泛的自旋螺旋体。对于这些螺旋,我们探索了超导顺序参数的结构,从MZM托管的内部反对称三重序列上散发出灯。我们还揭示了自旋轨道耦合的双重影响:尽管它倾向于扩大有关自旋螺旋角的拓扑阶段,但它也扩展了MZM的定位。由于提出的预测能力,我们的工作在实验工作和理论模型之间存在很大的差距,同时为拓扑量子计算的工程平台铺平了道路。