有些人报告了与接触电磁场(包括手机)有关的多种健康问题。这通常被称为“电磁超敏反应”。其症状因人而异,可能包括疲劳、倦怠、注意力不集中、皮肤发红和刺痛等等。这种敏感性可能会使一些人丧失行动能力。重要的是要知道电磁超敏反应不是医学诊断,但人们所经历的症状是真实存在的。这些症状可能与其他原因有关。值得信赖的医疗保健专业人员可以帮助电磁超敏反应患者采取措施找出原因并解决症状。据世卫组织称,目前尚无科学依据证明电磁超敏反应与接触电磁场之间存在联系。
已经提出了不同的基于Wi-Fi的无线应用程序,从日常活动识别到生命体征监测。尽管具有显着的感知精度,但高能量的吸引力和对定制硬件修改的需求阻碍了现有传感解决方案的广泛部署。在本文中,我们提出了基于射频(RF)能量收集的节能无线传感解决方案Rehsense。不是依靠渴望耗电的Wi-Fi接收器,而是利用RF能量收割机作为传感器,并利用从环境Wi-Fi信号收获的电压信号来同时进行上下文感测和能量收获。我们使用商业货架(COTS)RF Energy Harvester设计和实施Rehsense。对三个细粒无线传感任务的广泛评估(即,呼吸监测,人类活动识别和手势识别)表明,Rehsense可以通过传统的基于Wi-Fi-fi-fi-fi-fi-dive的溶液实现可比的感测精度,同时适应不同的感应环境,从而减少传感的功耗。7%,最多收获4。RF能量的5 MW电源。RF能量的5 MW电源。
摘要:射频能量收集 (RFEH) 是目前广受欢迎的一种可再生能源收集形式,因为许多无线电子设备可以通过 RFEH 协调其通信,尤其是在 CMOS 技术中。对于 RFEH,检测低功率环境 RF 信号的灵敏度是重中之重。通常采用 RFEH 输入端的升压机制来增强其灵敏度。然而,保持其灵敏度的带宽非常差。这项工作在 3 级交叉耦合差分驱动整流器 (CCDD) 中完全在片上实现了可调升压 (TVB) 机制。TVB 采用交错变压器架构设计,其中初级绕组实现到整流器,而次级绕组连接到 MOSFET 开关,用于调节网络的电感。 TVB 使整流器的灵敏度保持在 1V 直流输出电压下,在 3 至 6 GHz 的 5G 新无线电频率 (5GNR) 频段的宽带宽内最小偏差为 − 2 dBm。在 − 23 dBm 输入功率下,直流输出电压为 1 V,峰值 PCE 在 3 GHz 下为 83%。借助 TVB,可以在 1 V 灵敏度点处保持 50% 以上的 PCE。提出的 CCDD-TVB 机制使 CMOS RFEH 能够以最佳灵敏度、直流输出电压和效率运行于宽带应用。
摘要 — 近年来,全球范围内的在线视频服务使用量迅速增长。如今,视频流、视频会议、直播和社交网络等多种应用都利用了这项技术。最近的一项研究发现,这些服务的发展和成功导致如今全球超过 1% 的温室气体排放与在线视频有关,年增长率接近 10%。本文从系统工程师的角度回顾了有关在线视频能耗的最新发现,其中系统工程师是典型在线视频服务的设计者和运营商。我们讨论了所有相关的能源消耗,强调了与服务质量变量以及视频属性的依赖关系,回顾了文献中不同设备的能耗模型,并将这些现有模型汇总为通用在线视频服务总体能耗的全局模型。通过分析该模型及其含义,我们发现终端用户设备和视频编码具有最大的节能潜力。最后,我们概述了视频流能源效率改进的最新进展,并提出了节能视频流服务的未来研究方向。
解决方案将集成用于能量收集的多端口整流天线、电源管理单元 (PMU)、微控制单元 (MCU)、RF 收发器模块和传感器。 关键组件是多端口整流天线系统。它从蜂窝和无线系统收集环境 RF 能量以提供直流电源,即使在光线不足和黑暗的室内或嵌入式环境中也是如此。 为了补充低 RF 能量区域的环境 RF 能量,无线电力传输 (WPT) 还可以与独立 RF 源 (>900 MHz) 一起使用以补充 RF 环境。 PMU 用于合并多个输入功率并将其重新分配给多个输出负载。PMU 系统可以容纳具有不同电压规格的传感器或收发器。在 IoT 传感器节点中,功率流以 μW 到 mW 为单位。
摘要:无线传感器网络和物联网受益于近年来功耗方面的进步,以实现智能控制实体。电池技术的类似进步使这些系统变得自主。然而,这种方法不足以满足现代应用的需求。为这些传感器供电的另一种解决方案是使用其环境中可用的能量,例如热能、机械振动、光能或无线电频率。然而,传感器通常放置在功率密度较低的环境中。本研究调查了与其他来源相比的无线电频率能量收集。在展示了在宽频带上收集能量的潜力后,进行了一项统计研究,以确定城市环境和农村地区的射频功率密度。多频带射频收集器系统旨在收集多个频带中的能量,以显示何时有多个射频源可用。当系统设计为在宽频带上运行时,可以增加收集的能量量。在本研究中,使用高级设计软件 (ADS) 制作了为无线传感器供电的多频带射频能量收集器。根据设计结果,所提出的能源收集方案在 GSM900 和 GSM1800 频段上效果更好。 关键词:能源收集器;无线网络;无线电源 1 引言 如今,监控我们所处环境的需求越来越重要,这使我们能够管理自己的行为;一个典型的例子就是天气预报。 现代传感器是小型、独立的设备,可对其周围环境进行简单的测量。 它们用于观察许多物理现象,如温度、压力、亮度等,这对于许多工业和科学应用至关重要。 传感器的作用是将物理量转换为可利用的电量,例如计算机可用的数字信号。 接口可以通过有线链路或无线方式进行,多年来一直如此。 同时,微电子和微机械领域的最新进展使得能够以合理的成本生产体积为几立方毫米的组件,同时功耗要求不断降低。微型传感器可以制成一个完整的嵌入式系统,部署多个微型传感器以自主方式收集环境数据并将其传输到一个或多个收集点,从而形成无线传感器网络 (WSN)。为这些传感器供电的传统方式是使用电池,但电池的能量有限,耗尽时需要更换。更换电池的维护成本可能很高,尤其是对于位于难以接近位置的传感器。在这种情况下,另一种自供电方式将是有利的,而能量收集则提供了这一潜力。1.1 能量收集 用于为传感器供电的能量收集系统由五个不同的模块组成,如图 1 所示。系统的第一级是能量传感器。它提供物理量作为输出,可用作能量转换级的输入。传感器的工作原理基于物理或化学效应。主要有六类:热、机械、光学、磁、电和化学 [1]。
摘要 2018 年美国国防战略指出,美国国防部 (DoD) 迫切需要“以相关的速度提供性能”。本论文提出了一个问题:美国军方“如何”以相关的速度提供射频 (RF) 频谱能力。RF 能力为国防部提供了关键的功能,对军事行动越来越重要。然而,RF 频谱继续变得更加拥挤和有争议;军事能力必须在日益动荡、不确定、复杂和模糊 (VUCA) 的世界中继续发挥作用。本论文探讨了军事和行业利益相关者在快速交付 RF 系统方面面临的当前系统性挑战。结合文献综述、利益相关者访谈和基于网络的调查来分析 RF 能力生态系统。论文 1) 提出了一系列确定的挑战,以“以相关的速度交付 [RF 功能]”;2) 评估行业平台方法如何应对这些挑战。利益相关者访谈和调查结果表明,大多数问题都基于获取、知识和使用标准的挑战。此外,结果显示,尽管几乎所有受访者都认为交易 (97%) 和创新 (99%) 平台具有价值,但基于网络的调查所提供的价值不足以产生网络效应。分析了十个行业平台用例,最终建议通过专注于提供灵活、多功能 RF 功能的混合行业平台原型来测试平台战略。
已经针对该系统的不同组件进行了文献调查。表一概述了功率转换阶段、高效功率转换的关键组件以及针对每个部分的相关文献调查。最近的调查主要关注功率转换技术 [4], [6], [7]、整流器拓扑 [7], [8] 或从网络角度来看的 RFEH [5], [9]。然而,在已报道的评论中,RFEH 的天线设计并未被视为关键参数。例如,虽然一些调查从整体角度考虑了天线的带宽和效率,或针对小型化或可穿戴天线等小众应用的特定天线设计 [8], [10],但尚未对某些天线参数对功率接收和转换效率的影响进行详细分析。 58 本综述回顾了整流天线中的天线设计技术,旨在区分 RFEH 和 WPT 特定的天线设计挑战与通信的标准天线设计。从两个角度比较天线,即端到端阻抗匹配和辐射特性,每个角度都进行比较。