摘要。已经开发了两种分析颤振解决方案方法来优化二维和三维飞机机翼结构,其设计标准基于气动弹性不稳定性。第一种方法使用二维机翼模型的开环结构动力学和稳定性分析,以获得优化过程的颤振、发散和控制反转的临界速度。第二种方法涉及使用假定模态技术的三维机翼结构颤振解决方案,并有效地应用于基于颤振标准的气动弹性优化。该颤振解决方案采用能量方程和 Theodorsen 函数来计算气动载荷,并且在设计变量方面是完全参数化的,这些设计变量是锥度比、后掠角、弹性和剪切模量。由于颤振解决方案需要弯曲和扭转固有频率,因此还分析了飞机机翼的自由振动分析。 AGARD 445.6 机翼模型在马赫数为 0.9011 时的颤振解分析结果与文献中的实验结果相符。接下来,将三维颤振代码与优化框架相结合,对 AGARD 445.6 进行基于颤振的优化,以最大化颤振速度。
研究超声速气流作用下复合材料层合板的气动弹性失稳问题,通过求解气动弹性特性的广义特征值问题进行分析。通常通过计算不同来流速度下层合结构的固有频率,得到层合板在气流作用下的临界失稳速度,这是由于层合结构刚度减小,导致结构失稳。应根据复合材料壁板所处的力学环境合理设计结构参数,避免在气流作用下出现结构失稳问题。活塞理论最初由Lighthill在Hayes对Tsien高超声速相似理论的扩展基础上发展起来。在壁板颤振研究中,为了更好地模拟实际的气动变化过程,许多研究者提出了各种气动计算模型,但这些气动模型的不足之处在于考虑了较为复杂的边界条件,因此方程的求解过程相当复杂。在结构力学的框架下,利用二维模型,利用活塞理论推导了能够预报超声速范围内先进结构壁板颤振的精细气动弹性模型。活塞理论被广泛应用于许多气动模型,它提供了体表某点处表面下洗流与气动压力之间的准定常点函数关系。这使得活塞理论成为一种计算成本低廉的空气动力学模型。在本论文中,CUF工具的高效性允许推导任意阶模型,Carrera统一公式允许使用紧凑统一的公式推导任何模型。强形式解和提出的CUF模型的有限元近似。本文推导了二维模型的FEM特征矩阵,基本核允许使用自动程序推导矩阵。有限元法(FEM)由于其多功能性和数值效率而仍然值得关注。已经解决了力学的各种问题,包括静态,自由振动和动态响应问题。通过求解气动弹性特性的广义特征值问题对其进行分析,并考虑了许多参数来研究它们对颤振边界的影响。关键词:有限元方法、活塞理论、气动弹性不稳定性、气动弹性、Carrera 统一公式、超音速、复合层压板。