不准确性和伤害继续在进行空降行动的风险评估中发挥作用,这增加了在静态线操作期间监测空中风的理由。尽管空降界普遍认为高空风速越快,伞兵在着陆时水平漂移越快,但有根据的数据极其有限。2022 年和 2023 年的两起轶事案例凸显了潜在影响,但需要进一步研究才能得出明确结论。在两次空降行动中,空中风速都超过了 25 节,但地面风仍在可容忍范围内。在这两种情况下,六名经验丰富的跳伞者都带着 MC-6 降落伞跳出,这是一种可操纵的伞盖,具有 10 节向前漂移的能力。即使跳伞者采取了适当的降落伞着陆 (PLF) 姿势,他们都迅速向后漂移并以极大的力量着陆。大多数人需要某种形式的医疗救治。如果这些伞兵使用 T-11 降落伞,潜在的伤害可能会更加严重。
fi g u r e 3初始(前胸甲)在MGCO 2 E HA -1(a)中的地上森林碳密度和森林碳的平均百分比在飓风(DFC/AFC*100)之后立即降低(dfc/afc*100),这三种情况下,新英格兰县总结了三种情况(b)。地上森林碳(AFC)的值代表了我们八个硬木和软木水池中存储的碳(表2),深绿色的阴影代表了高森林碳密度和浅绿色阴影,代表低森林碳。较深的红色和橙色代表较高的森林碳(DFC)的较高部分,黄色阴影较轻,代表较低的DFC百分比,白色代表零DFC。另外,图S2显示了MMTCO 2 e中新英格兰县的累积AFC和DFC值。地图线描述了研究区域,不一定描绘了公认的国家边界。
4.5 边界条件 ................................................................................ 40 4.6 研究案例分类 .............................................................................. 43 4.7 整体质量和能量平衡 ...................................................................... 44 4.7.1 连续性方程 ...................................................................... 44 4.7.2 热力学第一定律 ...................................................................... 48 4.8 空房间模拟 ................................................................................ 50 4.8.1 入口速度的影响 ...................................................................... 50 4.8.2 入口和壁面温度的影响 ...................................................... 57 4.8.3 通风口位置的影响 ...................................................................... 60 4.9 有人的房间模拟 ............................................................................. 68 4.9.1 站立的人 ............................................................................. 68 4.9.2 坐在椅子上的人 ...................................................................... 81 4.10 热舒适区表示 ............................................................................. 85
摘要 本研究介绍了一系列实验,研究在风的影响下不同孔隙度的木质燃料阵列的阴燃行为。使用在实验室规模的风洞内燃烧的木垛模拟野外燃料。通过测量质量损失和排放量来表征阴燃行为。结果表明,在所有情况下,平均燃烧率随风速增加而增加。在高孔隙度情况下,随着风速的增加,燃烧率增加了 18% 到 54%。对于低孔隙度情况,在 0.5 到 0.75 m/s 之间观察到燃烧率增加了约 170%。CO/CO 2 排放量之比随风速降低。因此,风可能有助于促进阴燃燃烧,CO/CO 2 的下降表明了这一点,而 CO/CO 2 是燃烧效率的标志。进行了理论分析以评估时间分辨质量损失数据中的指数衰减行为。质量和热传递模型被用来评估氧气供应或热量损失是否能够单独解释观察到的指数衰减。分析表明,质量传递或热传递本身都无法解释指数衰减,但可能需要两者结合。
我在此提交由 Dominick J. Strada 撰写的论文,题为“研究甲板上相对风对 MH-60S 直升机在船上发射和回收操作中的影响”。我已经检查了这篇论文的最终电子版的形式和内容,并建议接受它作为获得理学硕士学位(主修航空系统)的部分要求。
图 4 基于隐马尔可夫模型估计的白天克罗泽特和南乔治亚岛觅食的雌性和雄性漂泊信天翁 Diomedea exulans 与风速(a–b、e–f、i–j、m–n;海拔 10 米)和风向相对于鸟类轨迹(c–d、g–h、k–l、o–p)的转换概率。显示的主要行为转换如下:定向飞行到区域限制搜寻(a–d),搜寻到定向飞行(e–h),搜寻到休息(i–l)和休息到搜寻(m–p)。由于从定向飞行到休息和从休息到搜寻的转换概率为零,我们认为从休息到搜寻的转换代表起飞行为,从搜寻到休息的转换代表降落在海面上。模型估计的系数以雌性(实线)和雄性(虚线)的黑线表示,95% 置信区间以灰色阴影表示。请注意,y 轴范围不同
图 4 基于隐马尔可夫模型估计的白天克罗泽特和南乔治亚岛觅食的雌性和雄性漂泊信天翁 Diomedea exulans 与风速(a–b、e–f、i–j、m–n;海拔 10 米)和风向相对于鸟类轨迹(c–d、g–h、k–l、o–p)的转换概率。显示的主要行为转换如下:定向飞行到区域限制搜寻(a–d),搜寻到定向飞行(e–h),搜寻到休息(i–l)和休息到搜寻(m–p)。由于从定向飞行到休息和从休息到搜寻的转换概率为零,我们认为从休息到搜寻的转换代表起飞行为,从搜寻到休息的转换代表降落在海面上。模型估计的系数以雌性(实线)和雄性(虚线)的黑线表示,95% 置信区间以灰色阴影表示。请注意,y 轴范围不同
责任限制/免责声明 MATLAB ® 是 The MathWorks, Inc. 的商标,经许可使用。The MathWorks 不保证本书中文本或练习的准确性。本作品对 MATLAB ® 软件或相关产品的使用或讨论并不构成 The MathWorks 对特定教学方法或 MATLAB ® 软件特定用途的认可或赞助。虽然出版商和作者已尽最大努力编写本作品,但他们不对本作品内容的准确性或完整性作出任何陈述或保证,并特别声明放弃所有担保,包括但不限于对适销性或特定用途适用性的任何默示担保。销售代表、书面销售材料或本作品的促销声明不得创建或延长任何担保。本作品中引用某个组织、网站或产品作为引文和/或潜在进一步信息来源,并不意味着出版商和作者认可该组织、网站或产品可能提供的信息或服务或可能提出的建议。本作品的出售前提是出版商不提供专业服务。本文包含的建议和策略可能不适合您的情况。您应在适当的情况下咨询专家。此外,读者应注意,本作品中列出的网站可能在撰写本作品和阅读本作品之间发生变化或消失。出版商和作者均不对任何利润损失或任何其他商业损失负责,包括但不限于特殊、偶然、后果或其他损害。
风振对双子座 8m 主镜的影响 Myung K. Cho 1,2 、Larry Stepp 1 和 Seongho Kim 3 (1)双子座 8m 望远镜项目;(2)亚利桑那大学光学科学中心;(3)亚利桑那大学航空航天和机械工程学院 摘要 大型望远镜的关键设计因素之一是控制由风压变化引起的主镜畸变。为了量化望远镜风荷载效应,双子座天文台在实际山顶条件下进行了一系列风试验。在南双子座望远镜的调试期间,同时测量了镜面多个点的压力,以及穹顶内外多个位置的风速和风向。在测试期间,我们改变了穹顶相对于风的位置、望远镜仰角、挡风玻璃在观测狭缝中的位置以及通风门的开口大小。针对 116 种不同的测试条件,以每秒十次的数据采样率记录了五分钟的数据。这些数据集经过处理,可提供每个时刻镜面上的压力图。根据这些压力图,使用有限元分析计算主镜的光学表面畸变。开发了数据缩减程序,以增强测试数据和镜面畸变的可视化。测试结果对