摘要:可再生能源的多变性给系统安全性和稳定性带来了困难。因此,有必要研究几种电力系统场景中的系统风险。在风电一体化非管制电网中,风电场需要在运营前至少提前一天提交其发电量的投标。风电场根据预期风速 (EWS) 提交数据。如果实际风速 (RWS) 与预期风速不匹配,ISO 将对风电场实施惩罚/奖励。简而言之,这就是电力市场不平衡成本,它直接影响系统利润。在这里,风电场同时使用太阳能光伏和电池储能系统,通过掌握不平衡成本的负面结果来利用系统利润。除了系统利润,重点还在于系统风险。系统风险是使用风险评估因素计算的,即风险价值 (VaR) 和累积风险价值 (CVaR)。本研究是在改进的 IEEE 14 和改进的 IEEE 30 总线测试系统上进行的。太阳能光伏电池存储系统可以首先在本地提供电力需求,然后将剩余电力提供给电网。通过使用此概念,可以通过结合本文研究的太阳能光伏和电池存储系统来最大限度地降低系统风险。使用三种不同的优化方法进行了比较研究,即人工大猩猩部队优化算法 (AGTO)、人工蜂群算法 (ABC) 和顺序二次规划 (SQP),以检查所提技术的结果。AGTO 首次用于风险评估和缓解问题,这是本研究的独特之处。
利用风能产生的电力称为风力发电。风在运动时具有动能。一组风力涡轮机称为风电场。风电场可能由数百台单独的风力涡轮机组成。两台风力涡轮机之间的土地可用于农业。甘肃风电场是世界上最大的风电场,位于中国。风能发电的一般原理是风扇,也称为风力涡轮机。风力发电所涉及的能量转换过程是将风能转化为机械能,然后将机械能转化为发电机中的电能。风力涡轮机放置在一定高度,有支撑物,支撑物称为风塔。当风旋转涡轮叶片时,转子旋转,转子轴连接到发电机轴,利用电磁感应原理产生电能。风力涡轮机的主要部件是带叶片的转子、电磁制动器、机械制动器、变速箱、发电机襟翼或尾翼、轴和偏航控制机构。转子轴连接到高速变速箱。风速没有固定的,风速总是有波动的。为了避免风速波动,变速箱有助于保持发电机的发电量固定。励磁机用于为磁线圈提供所需的励磁。需要使用交流发电机将直流输出转换为交流输出。交流输出在升压变压器的帮助下输送到电力传输或输电网。部分电力用于运行风力涡轮机装置中的附件,如电机、电池和指示灯等。
存在一些混淆,因为在 UL 9540A 开发过程中使用的一些测试结果表明,在某些情况下,对于某些制造商的设备,将间距缩小到 1 英尺(0.3 米)以下即可实现足够的防火间隔。然而,行业损失经验表明,这并非始终如此,因此不能被视为可靠的指南。此外,UL 9540A 使用某些可变标准,例如风速,理论上可以冷却相邻的 BESS 容器,从而限制整体损坏。但这在实际安装中也存在未经证实的差异。例如,较高的风速也可能将火势从一个 BESS 单元推到另一个 BESS 单元,从而加速火势蔓延。因此,虽然 UL 9540A 提供了有用的热失控蔓延指导,但它并没有真正解决可变的环境条件及其对火势蔓延的影响。这只有通过足够的间距才能实现。
摘要:近年来,人们对自然通风解决方案的兴趣日益浓厚,将其作为实现可持续和节能建筑设计的一种手段。风捕器是一种古老的中东建筑元素,现已成为现代建筑中可行的被动冷却装置,从而提高了室内空气质量,减少了对机械通风系统的依赖。据推测,集成上翼墙 (UWW) 可以通过优化风捕获、空气循环和热调节来增强风捕器的有效性。因此,本研究旨在探索将双面风捕器与 UWW 结合起来的影响,特别强调 UWW 角度对建筑空间内通风性能的影响。为了实现这一目标,进行了一系列数值模拟,以评估风捕器和翼墙配置在不同 UWW 角度和不同风速条件下的协同作用。作为研究方法的第一步,通过比较数值结果和实验数据来验证 CFD 模型。研究结果表明这些方法之间具有良好的一致性。在下一阶段,对不同 UWW 角度(范围从 0 ◦ 到 90 ◦)的捕风器进行了严格评估。结果表明,30 ◦ 角的配置在关键通风参数(包括气流速率、换气率和空气平均年龄)方面表现出最佳性能。最后,对选定的配置在不同风速条件下进行了评估,结果证实即使在低风速条件下,捕风器也能提供符合标准要求的通风水平。
a. “UAV”或无人“飞艇”,设计用于在“操作者”的直接“自然视野”之外进行可控飞行,并具备以下任一项特性: 1. 具备以下两项特性: a. 最大“续航时间”大于或等于 30 分钟但小于 1 小时;并且 b. 设计用于在风速等于或超过 46.3 公里/小时(25 节)的阵风中起飞并进行稳定的可控飞行;或 2. 最大“续航时间”为 1 小时或更长; 技术注释 1. 就类别代码 9A012.a. 而言,“操作者”是指启动或指挥“UAV”或无人“飞艇”飞行的人。 2. 就类别代码 9A012.a. 而言,“续航时间”应针对海平面零风速下的 ISA 条件(参考 ISO 2533:1975)计算。 3. 就类别代码 9A012.a 而言,“自然视力”是指人类裸眼视力,无论是否佩戴矫正镜片。
摘要。天气监测系统用于为药剂师,农场,活动计划者和其他人提供精确的统计数据,以指导他们采取适当的措施。今天,随着智能技术的最后一次增长,系统以太多的传感技术开发,无法捕获广泛区域的实时插度数据。在本文中,建议的系统用于计算室内和室外环境中的天气(冷,冷,风速,湿度,温度和干燥),以监视和控制天气情况。该系统简单易于实现,由两个部分组成:第一部分仅在室外环境中使用,第二部分用于室内和室外环境。一个非常简单的硬件组件用于构建整个系统,例如DHT-11传感器,LCD(16x4)屏幕,Arduino MicroController和编码器来计算风速。可以扩展系统以根据天气条件来控制不同的任务。结果总结在表中并发送到控制单元系统。
无线电探空仪主要用于对大气中高达 36 公里高度的气象变量(压力、温度、相对湿度、风速和风向)进行现场高空测量。无线电探空仪测量对于国家气象预报能力至关重要(因此对于涉及生命和财产保护的公众恶劣天气预警服务也至关重要)。无线电探空仪和相关跟踪系统可同时测量所需的整个高度范围内的温度、相对湿度、风速和风向的垂直结构。这些气象变量在垂直方向上的变化包含了天气预报的大部分关键信息。无线电探空仪系统是唯一能够定期提供气象学家所需的所有四个变量的垂直分辨率的气象观测系统。识别变量发生突然变化的高度至关重要。因此,在无线电探空仪的整个部署周期内,保持可靠测量的连续性至关重要。
无线电探空仪主要用于对大气中高达 36 公里高度的气象变量(压力、温度、相对湿度、风速和风向)进行现场高空测量。无线电探空仪测量对于国家气象预报能力至关重要(因此对于涉及生命和财产保护的公众恶劣天气预警服务也至关重要)。无线电探空仪和相关跟踪系统可同时测量所需的整个高度范围内的温度、相对湿度、风速和风向的垂直结构。这些气象变量在垂直方向上的变化包含了天气预报的大部分关键信息。无线电探空仪系统是唯一能够定期提供气象学家所需的所有四个变量的垂直分辨率的气象观测系统。识别变量发生突然变化的高度至关重要。因此,在无线电探空仪的整个部署周期内,保持可靠测量的连续性至关重要。
无线电探空仪主要用于对大气中高达 36 公里高度的气象变量(压力、温度、相对湿度、风速和风向)进行现场高空测量。无线电探空仪测量对于国家气象预报能力至关重要(因此对于涉及生命和财产保护的公众恶劣天气预警服务也至关重要)。无线电探空仪和相关跟踪系统可同时测量所需的整个高度范围内的温度、相对湿度、风速和风向的垂直结构。这些气象变量在垂直方向上的变化包含了天气预报的大部分关键信息。无线电探空仪系统是唯一能够定期提供气象学家所需的所有四个变量的垂直分辨率的气象观测系统。识别变量发生突然变化的高度至关重要。因此,在无线电探空仪的整个部署周期内,保持可靠测量的连续性至关重要。
无线电探空仪主要用于在 36 公里高空对大气中的气象变量(压力、温度、相对湿度、风速和风向)进行现场高空测量。无线电探空仪测量对于国家气象预报能力至关重要(因此对于为公众提供涉及生命和财产保护的恶劣天气预警服务也至关重要)。无线电探空仪和相关跟踪系统可同时测量所需的整个高度范围内的温度、相对湿度、风速和风向的垂直结构。这些气象变量在垂直方向上的变化包含了天气预报的大部分关键信息。无线电探空仪系统是唯一能够定期提供气象学家所需的所有四个变量的垂直分辨率的气象观测系统。确定变量发生突然变化的高度至关重要。因此,在无线电探空仪的整个部署周期内,必须保持可靠的测量连续性。
