我要感谢我的导师:Markus Wilde 博士、Tiauw Go 博士和 James Brenner 博士,感谢他们在我在佛罗里达理工学院的整个学术生涯中给予我的耐心、指导和支持。如果没有他们的专业知识,这篇论文就不可能完成。我要特别感谢 Wilde 博士,他从大三设计到大四设计一直指导这个项目,并将其变成一个论文项目。这个项目给了我一个成长为工程师的绝佳机会。我还要感谢我的矩阵主管 Jose Nunez 博士,他给了我一个新毕业的工程专业学生机会,并给了我在 NASA KSC 工作的机会。特别感谢我的 NASA 导师:Mike DuPuis 和 Michael Johansen,感谢他们的耐心以及他们在建模和控制方面的丰富知识。当然,我要向 NASA KSC 飞行技术部门的所有人表示感谢。最后,我要感谢我的朋友 James (Jimmy) Byrnes、Andrew Czap、Juliette Bido 和 Charles (Joe) Berry 在本论文的整个过程中给予的支持和投入。我很自豪地说,我和他们是同班同学。
nasa.gov › centers › dryden › pdf PDF 作者:JW Pahle · 1990 — 作者:JW Pahle · 1990 数字电传操纵(DFBW)飞机采用复合机翼和机翼枢轴机构取代现有的……信号可靠性和。 30 页
[1] L. Derafa、L. Fridman、A. Benallegue 和 A. Ouldali,“四旋翼直升机姿态跟踪问题的超扭转控制算法”,载于《可变结构系统 (VSS)》,2010 年第 11 届国际研讨会,2010 年,第 62-67 页。[在线]。可访问:http://ieeexplore.ieee.org /stamp/stamp.jsp?arnumber=5544726 [2] A. Rabhi、M. Chadli 和 C. Pegard,“四旋翼飞行器的鲁棒模糊控制稳定”,载于《先进机器人技术 (ICAR)》,2011 年第 15 届国际会议,2011 年,第471-475 页。[在线]。可访问:http://ieeexplore .ieee.org =6088629 / stamp/ stamp。JSP?ar 编号 [3] H. Khebbache、B. Sait、F. Yacef 和 Y. Soukkou,“在执行器故障情况下对四旋翼飞行器进行稳健稳定”,《国际信息技术、控制和自动化杂志》,第 2 卷,第 2 期。2,2012 年,第 1-13 页。[4] P. Johan From、J. Tommy Gravdahl、K. Ytterstad Pettersen,《车辆操纵器系统》,Verlag,伦敦:Springler,2014 年。[5] Atheer L. Salih、M. Moghavvemi、Haider A. F. Mohamed、Khalaf Sallom Gaeid,《四旋翼无人机的建模和 PID 控制器设计》,IEEE,2010 年。[6] D. Lee、H. Jin Kim 和 S. Sastry,“四旋翼直升机的反馈线性化与自适应滑模控制”,《国际控制自动化与系统杂志》,第 3 卷,第 1 期。7,页。页。419-428,2009 年。[7] O. Gherouat、D. Matouk、A. Hassam 和 F. Abdessemed,“四旋翼无人机的建模和滑模控制”,J.自动化与系统工程,卷。10,号。3,页。150-157,2016 年。[8] Abraham Villanueva、B. Castillo-Toledo 和 Eduardo Bayro-Corrochano,“四旋翼多模式飞行滑模控制系统”,2015 年国际无人机系统会议 (ICUAS),美国科罗拉多州丹佛市,2015 年 6 月。[9] 易奎、顾锋、杨丽英、何玉清、韩建达,“四旋翼吊挂系统滑模控制”,第 36 届中国控制会议论文集,中国大连,2017 年 7 月 26-28 日。[10] A. Benallegue、A. Mokhtari 和 L. Fridman, “四旋翼无人机的反馈线性化和高阶滑模观测器”,《VariableStructure Systems》,2006 年。VSS’06。国际研讨会,2006 年,第365–372。5887–[在线]。可访问:http://ieee xplore.ieee.org/stamp/stamp.jsp?arnumber=1644545 [11] T. Madani 和 A. Benallegue,“四旋翼无人机的滑模观测器和反步控制”,美国控制会议,2007 年。ACC ’07,2007 年,第
摘要 - 滑模控制是一种鲁棒的非线性控制算法,已用于实现无人飞机系统的跟踪控制器,该控制器对建模不确定性和外部干扰具有鲁棒性,从而为自主操作提供出色的性能。无人飞机系统滑模控制应用的一个重大进步是采用无模型滑模控制算法,因为滑模控制实施中最复杂和最耗时的方面是结合系统模型推导控制律,这是每个单独的滑模控制应用都需要执行的过程。使用各种航空系统模型和真实世界干扰(例如离散化和状态估计的影响)在模拟中比较了各种无模型滑模控制算法的性能。结果表明,两种性能最佳的算法表现出非常相似的行为。这两种算法在四旋翼飞行器上实现(在模拟和使用真实硬件的情况下),并使用相同的状态估计算法和控制设置将其性能与传统的基于 PID 的控制器进行了比较。模拟结果表明,无模型滑模控制算法表现出与 PID 控制器相似的性能,而无需繁琐的调整过程。两种无模型滑模控制算法之间的比较表明,通过跟踪误差的二次均值测量,性能非常相似。飞行测试表明,虽然无模型滑模控制算法可以控制真实硬件,但在成为传统控制算法的可行替代方案之前,还需要进一步的特性描述和重大改进。无模型滑模控制和基于 PID 的飞行控制器都观察到了较大的跟踪误差,并且其性能对于大多数应用而言是不可接受的。两种控制器的性能不佳表明跟踪误差可以归因于状态估计中的误差。通过改进状态估计进行进一步测试将可以得出更多结论。关键词:无模型控制、滑模控制、鲁棒控制、飞行控制、无人机系统。1.简介
美国宇航局德莱顿飞行研究中心在尖头楔形飞行器上开发了一种齐平空气数据传感 (FADS) 系统。本文详细介绍了一种实时攻角估计方案的设计和校准,该方案旨在满足配备超音速燃烧冲压式喷气发动机的研究飞行器的机载空气数据测量要求。FADS 系统设计用于在 3-8 马赫和 –6°-12° 攻角的飞行中运行。FADS 架构的描述包括端口布局、气动设计和硬件集成。将静态和动态性能的预测模型与马赫和攻角范围内的风洞结果进行了比较。结果表明,静态攻角精度和气动滞后可以充分表征并纳入实时算法。
摘要:要将遥控无人驾驶飞行器全面融入民用空域,首先需要在飞行器中集成交通检测和规避 (DAA) 系统。DAA 系统支持遥控飞行员执行与其他飞机保持良好距离并避免碰撞的任务。已经进行了多项与保持良好距离功能设计相关的研究,这些研究为制定适用于非欧洲国家的技术标准提供了参考。本文提出了一种保持良好距离的实施方案,利用过去的国际项目成果,满足欧洲空域的需求和特殊性,并为遥控飞行员和空中交通管制员所接受,对载人飞机使用的标准操作程序的影响极小。所提出的“保持清晰”软件已通过实时模拟成功验证,其中飞行员和管制员参与了模拟,并考虑到欧洲空域常见的交通相遇和任务场景。所取得的成果凸显了所提出的 RWC 功能提供的适当态势感知,以及其对远程飞行员在解决冲突方面做出适当决策的有效支持。实时模拟测试表明,在几乎所有情况下,RWC 机动都成功执行,为 RP 提供了足够的时间来评估冲突、与管制员协调(如果需要)并执行机动。所提出的 RWC 功能的基本作用在管制员不提供任何分离规定的非管制空域类别中尤为明显。此外,其有效性也在管制空域中与按照目视飞行规则飞行的飞机相遇时得到了测试,管制员没有被告知或对这些飞机的信息较少。验证测试结果表明了两个关键的潜在安全优势,即:减轻执行防撞操作的负担并防止潜在冲突,同时不会扰乱交通流并可能产生其他潜在危险情况的进一步后果。
近年来,四旋翼飞行器控制设计研究迅速增多。四旋翼飞行器的线性控制器设计已在多项工作中实现,如线性二次调节器 (LQR) 和比例积分微分 (PID) (Khatoon 等,2014) (Reyes-Valeria 等,2013)。非线性控制设计也已通过不同的技术实现,如反步法 (Das 等,2009)、滑模 (Runcharoon 和 Srichatrapimuk,2013) 和反馈线性化 (Saif,2009)。 (Castillo 等,2005) 将非线性控制算法与 LQR 控制律的性能进行了比较。结果表明,线性控制器应用于非线性系统时响应不稳定,而非线性控制器则表现出稳定的响应。 (Gomes 等人,2016) 使用 AR.Drone 四旋翼飞行器和 Vicon 运动捕捉系统跟踪移动目标,并使用比例微分 (PD) 控制器进行线性定位。 (Mashood 等人,2016) 展示了两架 AR.Drone 沿平方路径飞行的实验结果,使用 VICON 系统和 MATLAB/SIMULINK 进行反馈和控制实现。这可以通过 AR Drone Simulink 开发套件 (ARDSDK) 实现。 (Campbell 等人,2012) 展示了四旋翼飞行器自动驾驶仪的设计和实现,使无人机能够起飞、从一个位置转移到另一个位置并降落在所需位置。
编辑委员会博士Mustafa Necmiİlhan博士 - 加兹大学 - Özlemçakir博士 - DokuzEylül大学协会。MehmetMerveÖzaydın-AnkaraHacıBayramVeli University Assoc。
在最坏的情况下,敌人在对四轴飞行器控制器的射频 (RF) 链路与信号情报 (SIGINT) 测向设备进行三角测量后,向排发出间接火力。为避免泄露机密和随后的利用,飞行员应在飞行操作期间通过在控制器和敌方传感器之间放置地形特征来实施地形遮蔽,以降低其射频信号。同样,飞行员可以尝试在会反射无线电波的地形附近飞行,并导致错误的方位角,从而产生敌方测向误差。例如,在印度尼西亚的丛林巡逻期间,排左右两侧较茂密的植被和陡坡有助于限制探测。但是,排领导在权衡沿着渠道地形移动的战术风险与敌方 SIGINT 威胁的可能性时,必须考虑现有的情报估计。
摘要:桥梁状况评估通常由桥梁检查员通过目视检查进行。考虑到大量老化桥梁结构的积压,需要开发经济高效且创新的解决方案,以定期评估桥面状况,而不会中断交通。这使得遥感技术成为桥梁检查领域的可行选择。本文探讨了使用无人机 (UAV) 应用红外热成像 (IRT) 检测和量化混凝土桥面地下分层的潜力。无人机携带的热传感系统专注于使用无人机获取热图像并从图像数据中提取信息。使用安装在无人机上的高分辨率热像仪检查了两个在用的混凝土桥面。然后使用定制程序增强并拼接所捕获的图像,以生成整个桥面的马赛克视图,指示检测到的分层区域的大小和几何形状。通过在相同的桥面上进行锤击和半电池电位测试来验证结果。研究结果表明,该技术能够提供与传统手动检查方法相当的测量结果。因此,它可以成为桥梁维护和维修决策的极佳辅助手段。关键词:桥面、状况评估、脱层、红外、热图像、